Projection algorithms and convergence theory

E.A. Nurminski

Institute for Automation and Control Processes
Vladivostok, Russia
nurmi@dvo.ru

Universita della Calabria December 2008

Unconditional convex optimization

Convex optimization problem

$$\min f(x) = -f^{*}(0) = \sup_{x} \{0x - f(x)\}\$$

Algorithmic idea

Reduce computation of $f^*(0)$ to projections on approximation of epi f^* .

If it were possible to project on epi f^\star itself then we would have superlinear convergence !

Least distance problem:

$$\min \|x\| = \|x^*\| = \|\sum_{i=1}^m \lambda_i^* \hat{x}^i\| \qquad (1)$$

$$x = \sum_{i=1}^m \lambda_i \hat{x}^i$$

$$(\lambda_1, \lambda_2, \dots, \lambda_m) \in \Delta_m$$

Wolfe algorithm:

- For certain $I \subset \{1, 2, ..., m\}$ solve $(\ref{eq:solve})$ without nonnegitivity constraint. If some λ_i^{\star} is negative, drop it from I according to some rule and resolve.
- ② For $x^* = \sum_{i \in I} \lambda_i^* \hat{x}^i$ find k_I such that $\hat{x}^{k_I} x^* = \min \hat{x}^i x^*$ and add it to corral: $I \to I \cup k_I$.

Rate of convergence

Type of convergence:

$$||x^{\star}|| \leq Cq^k, k = 0, 1, \dots$$

where k is a number of iterations.

If $0 \notin \operatorname{co} \{\hat{x}^1, \hat{x}^2, \dots, \hat{x}^m\}$ convergence is finite and "better then linear".

Precise upper bound for q is unknown.

Projection on polyhedra

Least norm solution for a system of inequalities:

$$\min \frac{1}{2} ||x||^2 = ||x^*||$$
$$Ax \le b$$

 $A - m \times n$ matrix, etc.

Appyling exact penalty: there exists $\Gamma>0$ such that for all $\gamma\geq \Gamma$

$$\min_{Ax \le b} \frac{1}{2} ||x||^2 = \min\{\frac{1}{2} ||x||^2 + \gamma |Ax - b|_{\infty}^+\}$$
 (2)

where $|Ax - b|_{\infty}^+ = \max\{0, \max_{i=1,2,...,n}(Ax - b)_i\}.$

Reducing to polytope

Denote $\bar{x} = (x, x_{n+1})$ and $\bar{A} = ||A|b||$.

Then

$$Ax \leq b \leftrightarrow \bar{A}\bar{x} \leq 0, \bar{x}_{n+1} = 1$$

Moreover

$$|Ax - b|_{\infty}^+ = |\bar{A}\bar{x}|_{\infty}^+ = \max_{\lambda \in \Delta_m} \operatorname{co}\{0, (\bar{A}\bar{x})_i\}, i = 1, 2, \dots, n\}.$$

Therefore in terms of support function:

$$|Ax - b|_{\infty}^+ = (\cos\{0, (\bar{A})_i\}, i = 1, 2, \dots, n\})_{\bar{x}}$$

with $\bar{x} = (x, 1)$.

Rewriting penalty term:

$$\min \frac{1}{2} ||x||^2 = \min \{ \frac{1}{2} ||\bar{x}||^2 + \gamma (\cos \{0, (\bar{A})_i\}, i = 1, 2, \dots, n\})_{\bar{x}} \} = Ax \le b$$

$$\min \{ \frac{1}{2} ||\bar{x}||^2 + (\gamma \cos \{0, (\bar{A})_i\}, i = 1, 2, \dots, n\})_{\bar{x}} \} = \min \{ \frac{1}{2} ||\bar{x}||^2 + (D_{\gamma})_{\bar{x}} \}$$

where $D_{\gamma} = \gamma \operatorname{co} \{0, (\bar{A})_i\}, i = 1, 2, \ldots, n\}$ and again $\bar{x} = (x, 1)$.

Reducing to polytope

Using Lagrange relaxation on $\bar{x}_{n+1} = 1 = \bar{x}e^{n+1}$ obtain

$$\begin{split} \min \frac{1}{2} \|x\|^2 &= \max_u \min_{\bar{x}} \{ \frac{1}{2} \|\bar{x}\|^2 + (D_\gamma)_{\bar{x}} + u(\bar{x}e^{n+1} - 1) \} - \frac{1}{2} = \\ Ax &\leq b \\ \max_u \{ -u + \min_{\bar{x}} \{ \frac{1}{2} \|\bar{x}\|^2 + (D_\gamma + ue^{n+1})_{\bar{x}} \} \} - \frac{1}{2} \end{split}$$

The essential part of above is

$$\phi(u) = -\min_{\bar{x}} \{ \frac{1}{2} \|\bar{x}\|^2 + (D_{\gamma} + ue^{n+1})_{\bar{x}} \} \} = \min_{\bar{x}} \frac{1}{2} \|\bar{x}\|^2$$
$$\bar{x} \in D_{\gamma} + ue^{n+1}$$

where $D_{\gamma} = \gamma \operatorname{co} \{0, (\bar{A})_i\}, i = 1, 2, \ldots, n\}$ with γ arbitrary large.

Reducing to polytope

It can be shown that for " $\gamma=\infty$ "

$$\phi(u) = \alpha u^2, \alpha = \phi(1) > 0$$

and hence

$$\min_{Ax \le b} \frac{\frac{1}{2} ||x||^2}{-\frac{1}{4\phi(1)}}.$$

that is it is sufficent to solve the polytope-like problem

$$\min \frac{1}{2} \|\bar{x}\|^2 \\ \bar{x} \in \mathsf{Co}\{\bar{A}_i, i = 1, 2, \dots, m\} + e^{n+1}$$

with with only m rays and n+1 variables.

Numerical experiments

Numerical experiments

