Perturbed Fejer processes

E.A. Nurminski

Institute for Automation and Control Processes, Vladivostok

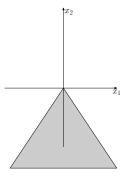
December 2008 Universita della Calabria, Cosenza

Outline

- Motivations
 - Convex feasibility problem
 - Convex optimization problem
- Pejer processes
 - Fejer processes with arbitrary perturbations
 - Fejer processes with attractants
 - Convergence theory
- Oecomposition and parallel computations
 - Sequential projection

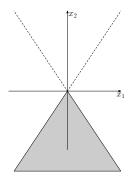
Very simple CFP

$$2x_1 + x_2 \le 0 \\
-2x_1 + x_2 \le 0$$



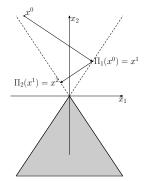
Very simple CFP, $X = X_1 \cap X_2$.

$$2x_1 + x_2 \le 0 \\
-2x_1 + x_2 \le 0$$

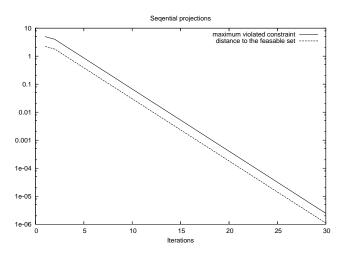


Very simple CFP, $X=X_1\cap X_2$, sequential projection.

$$2x_1 + x_2 \le 0 \\
-2x_1 + x_2 \le 0$$

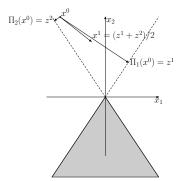


Very simple CFP — sequential projection

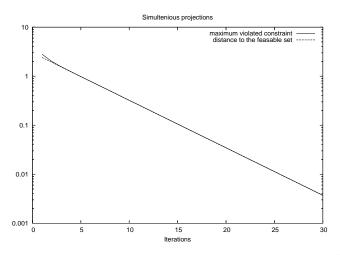


Very simple CFP — simultenious projection

$$2x_1 + x_2 \le 0 \\
-2x_1 + x_2 \le 0$$



Very simple CFP — simultenious projection



Projective equations:

$$x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0$$

G - (sub)gradient field, variational inequality operator, ...

Projective equations:

$$x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0$$

Simple iteration:

$$x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau),$$

Projective equations:

$$x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0$$

Simple iteration:

$$x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau),$$

Disadvantages:

1 G(x) needs to be strongly monotone;

Projective equations:

$$x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0$$

Simple iteration:

$$x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau),$$

Disadvantages:

- difficult to implement for nontrivial X;

Projective equations:

$$x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0$$

Simple iteration:

$$x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau),$$

Disadvantages:

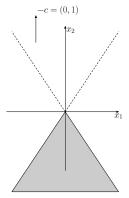
- \bullet G(x) needs to be strongly monotone;
- difficult to implement for nontrivial X;
- low rate of convergence.

Very simple COP

Solve the optimization problem:

$$min(-x_2) = min cx$$

 $2x_1 + x_2 \le 0$
 $-2x_1 + x_2 \le 0$



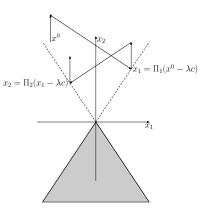
Very simple COP — sequential projection

Solve the optimization problem:

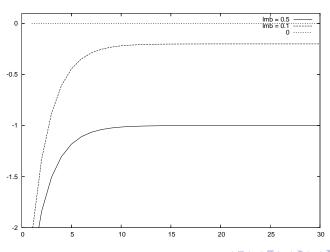
$$\min(-x_2) = \min cx$$

$$2x_1 + x_2 \le 0$$

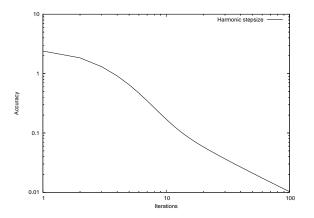
$$-2x_1 + x_2 \le 0$$



Very simple COP — sequential projection



Very simple COP — harmonic stepsize

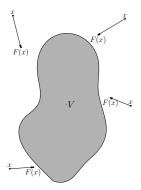


$$x^{k+1} = \Pi_k(x^k - \lambda_k c), k = 0, 1, \dots, \lambda_k = c/k.$$

Fejer operators

Definition. An operator F will be called Fejer if for any $x \|F(x) - v\| \le \|x - v\|$ for all $v \in V, x \in \bar{x} + U$.

Definition. Fejer operator F will be called locally strong if for any $\bar{x} \notin V$ there exists a neighborhood of zero U and small enough $\alpha \in [0,1)$ such that $\|F(x) - v\| \le \alpha \|x - v\|$ for all $v \in V, x \in \bar{x} + U$.



Fejer processes

$$x^{k+1} = F(x^k), k = 0, 1, \dots$$
 (1)

where F is a Fejer operator of any kind.

Theorem. Let V — closed and bounded, F — locally strong Fejer, and sequence $\{x^k\}$, obtained by (1) with some arbitrary x^0 , bounded. Then all limit points of $\{x^k\}$ belong to V.

Perturbed Fejer processes

Fejer process with small perturbations:

$$x^{k+1} = F(x^k + z^k), k = 0, 1, \dots$$
 (2)

Theorem. Let V — closed and bounded, F — locally strong Fejer, the sequence $\{x^k\}$, obtained by (1) with arbitrary x^0 , is bounded, $z^k \to 0$ when $k \to \infty$. Then all limit points $\{x^k\}$ belong to V.

Collections of Fejer operators

Theorem. Let $\Phi = \{F_1, F_2, \dots, F_m\}$ is a finite collection of operators F_i such that for any $x \notin V$ there exists F_i locally strong Fejer at x, $z^k \to 0$ when $k \to \infty$ and $\mathcal{F}_k = F_{i_k}$, where F_{i_k} — locally strong Fejer at x^k . If the sequence $\{x^k\}$, constructed by

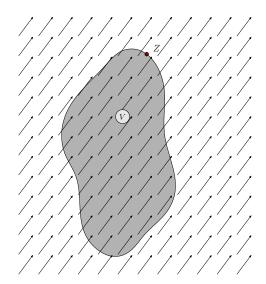
$$x^{k+1} = \mathcal{F}_k(x^k + z^k), \quad s = 0, 1, \dots$$
 (3)

is bounded then all its limit poins belong to V.

Question: What about infinite families?

Definition. Point-to-set mapping $G: V \to 2^E$ is callled a locally strong attractant (of some $Z \subset V$) if for any $x' \in V \setminus Z$ there is a neighborhood of zero U such that $g(z-x) \ge \delta > 0$ for all $z \in Z, x \in x' + U, g \in \Phi(x)$ and some $\delta > 0$.

An Attractant vector field



Fejer processes with attractants

Stationary:

$$x^{k+1} = F(x^k + \lambda_k g^k), \ g^k \in G(x^k). \tag{4}$$

Nonstationary:

$$x^{k+1} = F_k(x^k + \lambda_k g^k), \ g^k \in G(x^k).$$
 (5)

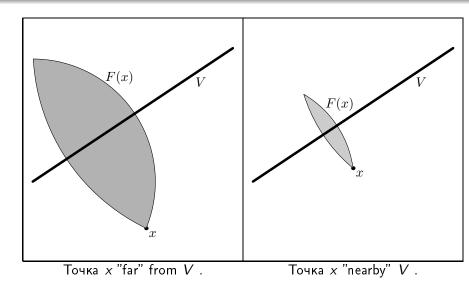
It follows from above that (4) as well as (5) converge to V if $\lambda_{\nu} \to 0$ when $k \to \infty$.

Theorem. Let F is a locally strong Fejer operator, G — locally strong attractant $Z \subset V$, upper semicontinuous on some open $\tilde{V} \supset V$ and sequence $\{x^k\}$, obtained by

$$x^{k+1} = F(x^k + \lambda_k g^k), \ g^k \in G(x^k), \tag{6}$$

where initial state x^0 arbitrary, $\lambda_k \to +0, \sum \lambda_k = \infty$. If $\{x^k\}$ bounded then any limit point $\{x^k\}$ belongs to Z.

Fejer projective operators



Sequential projection

Let

$$V = \cap_{\tau \in T} V_{\tau},$$

 $V_{ au}, au \in T$ — convex closed subsets of E.

Theorem. Let V- closed bounded set, which can be represented as an intersection of a finite family of convex sets $V=\cap_{\tau\in T}V_{\tau}$ and denote as $\Pi_{\tau}(x)=x_{\tau}$ the orthogonal projection of x onto V_{τ} . If $x\notin V_{\tau'}$ for some $\tau'\in T$, then the operator $F=\Pi_{\tau'}$ is locally strong Fejer at x.

Sequential projection gradient method

The problem:

$$\min_{x\in V} f(x), V = \bigcap_{i=1}^N V_i.$$

Sequential projection gradient method:

$$x^{k+1} = F_k(x^k - \lambda_k g^k), \ g^k \in \partial f(x^k)$$

где $F_k(x) = \Pi_{i_k}(x),$ а i_k такого, что $x^k
otin V_{i_k}.$ General theory asks for

$$\lambda_k \to +0, \quad \sum_{i=1}^{\infty} \lambda_k = \infty.$$

Can we do better?

Envelope stepsize control (ESC)

Algorithm model:

$$x^{k+1} = x^k - \lambda_k d^k, \ d^k \in D(x^k),$$

D(x) — usc set-valued mapping. Let $D(p,q) = \cos{\{d^t, p < t \leq q\}}$. Given

$$0< heta_m
ightarrow +0, m=0,1,\ldots$$
 and $q\in (0,1)$

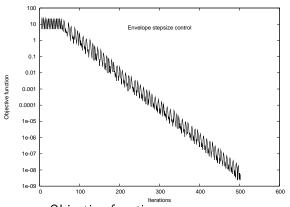
define $\{k_m\}$ and stepsizes $\{\lambda_k\}$ as follows:

- Set $k_0 = 0$ and pick up initial $\lambda_0 > 0$.
- For given m and k_m determine k_{m+1} as the index which satisfies conditions

$$0 \notin D(k_m, s) + \theta_m B, k_m \le s < k_{m+1}, \\ 0 \in D(k_m, k_{m+1}) + \theta_m B$$

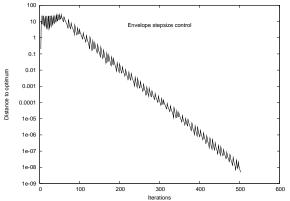
with
$$\lambda_k = \lambda_{k_m}$$
. Set $\lambda_{k_{m+1}} = q \lambda_{k_m}$.

Another very simple COP — ESC stepsize



Objective function convergence.

Another very simple COP — ESC stepsize



Distance to optimum convergence.

Summary

- Diminishing additive disturbances in arguments of Fejer operators does not prevent convergence of locally strong Fejer processes.
- Using attractants one can direct Fejer processes to a specific part of attracting set.
- Sequential and simultenious projections are Fejer and can be used to decompose/parallelize projective optimization algorithms.
- It looks like that it is possible to have linear-like convergence, but to prove it we need better convergence theory.