Perturbed Fejer processes

E.A. Nurminski

Institute for Automation and Control Processes, Vladivostok
nurmi@dvo.ru

December 2008
Universita della Calabria, Cosenza
Outline

1. Motivations
 - Convex feasibility problem
 - Convex optimization problem

2. Fejer processes
 - Fejer processes with arbitrary perturbations
 - Fejer processes with attractants
 - Convergence theory

3. Decomposition and parallel computations
 - Sequential projection
Very simple CFP

Find a point in the set

\[2x_1 + x_2 \leq 0 \]
\[-2x_1 + x_2 \leq 0 \]
Very simple CFP, $X = X_1 \cap X_2$.

Find a point in the set

$2x_1 + x_2 \leq 0$
$-2x_1 + x_2 \leq 0$
Very simple CFP, $X = X_1 \cap X_2$, sequential projection.

Find a point in the set

$$2x_1 + x_2 \leq 0$$
$$-2x_1 + x_2 \leq 0$$
Very simple CFP — sequential projection
Very simple CFP — simultaneous projection

Find a point in the set

\[
\begin{align*}
2x_1 + x_2 &\leq 0 \\
-2x_1 + x_2 &\leq 0
\end{align*}
\]
Very simple CFP — simultaneous projection

![Graph showing iterations vs. distance to the feasible set and maximum violated constraint.](image-url)
Projection in optimization and related subjects

Projective equations:

\[x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0 \]

\[G \text{ — (sub)gradient field, variational inequality operator, } \ldots \]
Projective equations:

\[x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0 \]

Simple iteration:

\[x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau), \]
Projection in optimization and related subjects

Projective equations:

\[x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0 \]

Simple iteration:

\[x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau), \]

Disadvantages:

1. \(G(x) \) needs to be strongly monotone;
Projection in optimization and related subjects

Projective equations:

\[x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0 \]

Simple iteration:

\[x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau), \]

Disadvantages:

1. \(G(x) \) needs to be strongly monotone;
2. difficult to implement for nontrivial \(X \);
Projective equations:

\[x = \Pi_X(x - \lambda G(x)), \quad \lambda > 0 \]

Simple iteration:

\[x^{k+1} = \Pi_X(x^k - \lambda G(x^k)), \quad \lambda \in (0, \tau), \]

Disadvantages:

1. \(G(x) \) needs to be strongly monotone;
2. difficult to implement for nontrivial \(X \);
3. low rate of convergence.
Very simple COP

Solve the optimization problem:

\[
\min (-x_2) = \min c x \\
2x_1 + x_2 \leq 0 \\
-2x_1 + x_2 \leq 0
\]
Very simple COP — sequential projection

Solve the optimization problem:

\[\min (-x_2) = \min cx \]
\[2x_1 + x_2 \leq 0 \]
\[-2x_1 + x_2 \leq 0 \]
Very simple COP — sequential projection
Very simple COP — harmonic stepsize

\[x^{k+1} = \Pi_k (x^k - \lambda_k c), \quad k = 0, 1, \ldots, \lambda_k = c/k. \]
Definition. An operator F will be called Fejer if for any x $\|F(x) - v\| \leq \|x - v\|$ for all $v \in V$, $x \in \bar{x} + U$.

Definition. Fejer operator F will be called locally strong if for any $\bar{x} \notin V$ there exists a neighborhood of zero U and small enough $\alpha \in [0, 1)$ such that $\|F(x) - v\| \leq \alpha\|x - v\|$ for all $v \in V$, $x \in \bar{x} + U$.

![Diagram](image-url)
\[x^{k+1} = F(x^k), \quad k = 0, 1, \ldots \quad (1) \]

where \(F \) is a Fejer operator of any kind.

Theorem. Let \(V \) — closed and bounded, \(F \) — locally strong Fejer, and sequence \(\{x^k\} \), obtained by (1) with some arbitrary \(x^0 \), bounded. Then all limit points of \(\{x^k\} \) belong to \(V \).
Fejer process with small perturbations:

\[x^{k+1} = F(x^k + z^k), \ k = 0, 1, \ldots \]

Theorem. Let \(V \) — closed and bounded, \(F \) — locally strong Fejer, the sequence \(\{x^k\} \), obtained by (1) with arbitrary \(x^0 \), is bounded, \(z^k \to 0 \) when \(k \to \infty \). Then all limit points \(\{x^k\} \) belong to \(V \).
Theorem. Let \(\Phi = \{F_1, F_2, \ldots, F_m\} \) is a finite collection of operators \(F_i \) such that for any \(x \notin V \) there exists \(F_i \) locally strong Fejer at \(x \), \(z^k \to 0 \) when \(k \to \infty \) and \(F_k = F_{i_k} \), where \(F_{i_k} \) — locally strong Fejer at \(x^k \). If the sequence \(\{x^k\} \), constructed by

\[
x^{k+1} = F_k(x^k + z^k), \quad s = 0, 1, \ldots
\]

is bounded then all its limit points belong to \(V \).

Question: What about infinite families?
Definition. Point-to-set mapping $G : V \rightarrow 2^E$ is called a locally strong attractant (of some $Z \subset V$) if for any $x' \in V \setminus Z$ there is a neighborhood of zero U such that $g(z - x) \geq \delta > 0$ for all $z \in Z, x \in x' + U, g \in \Phi(x)$ and some $\delta > 0$.
An Attractant vector field
Stationary:

\[x^{k+1} = F(x^k + \lambda_k g^k), \quad g^k \in G(x^k). \]

(4)

Nonstationary:

\[x^{k+1} = F_k(x^k + \lambda_k g^k), \quad g^k \in G(x^k). \]

(5)

It follows from above that (4) as well as (5) converge to \(V \) if \(\lambda_k \to 0 \) when \(k \to \infty \).
Theorem. Let F is a locally strong Fejer operator, G — locally strong attractant $Z \subset V$, upper semicontinuous on some open $\tilde{V} \supset V$ and sequence $\{x^k\}$, obtained by

$$x^{k+1} = F(x^k + \lambda_k g^k), \quad g^k \in G(x^k),$$

(6)

where initial state x^0 arbitrary, $\lambda_k \to +0, \sum \lambda_k = \infty$. If $\{x^k\}$ bounded then any limit point $\{x^k\}$ belongs to Z.
Fejer projective operators

$F(x)$

V

Точка x "far” from V.

$F(x)$

V

Точка x "nearby” V.
Let

\[V = \cap_{\tau \in T} V_{\tau}, \]

\[V_{\tau}, \tau \in T \text{ — convex closed subsets of } E. \]

Theorem. Let \(V \) — closed bounded set, which can be represented as an intersection of a finite family of convex sets \(V = \cap_{\tau \in T} V_{\tau} \) and denote as \(\Pi_{\tau}(x) = x_{\tau} \) the orthogonal projection of \(x \) onto \(V_{\tau} \). If \(x \notin V_{\tau'} \) for some \(\tau' \in T \), then the operator \(F = \Pi_{\tau'} \) is locally strong Fejer at \(x \).
Sequential projection gradient method

The problem:
\[
\min_{x \in V} f(x), \quad V = \bigcap_{i=1}^{N} V_i.
\]

Sequential projection gradient method:
\[
x^{k+1} = F_k(x^k - \lambda_k g^k), \quad g^k \in \partial f(x^k)
\]

где \(F_k(x) = \Pi_{i_k}(x) \), а \(i_k \) такого, что \(x^k \notin V_{i_k} \).

General theory asks for
\[
\lambda_k \to +0, \quad \sum_{i=1}^{\infty} \lambda_k = \infty.
\]

Can we do better?
Envelope stepsize control (ESC)

Algorithm model:

\[x^{k+1} = x^k - \lambda_k d^k, \quad d^k \in D(x^k), \]

\[D(x) \rightleftharpoons \text{usc set-valued mapping. Let } D(p, q) = \text{co} \{ d^t, p < t \leq q \}. \]

Given \(0 < \theta_m \rightarrow +0, m = 0, 1, \ldots \) and \(q \in (0, 1) \)

define \(\{k_m\} \) and stepsizes \(\{\lambda_k\} \) as follows:

- Set \(k_0 = 0 \) and pick up initial \(\lambda_0 > 0 \).
- For given \(m \) and \(k_m \) determine \(k_{m+1} \) as the index which satisfies conditions

\[0 \notin D(k_m, s) + \theta_m B, k_m \leq s < k_{m+1}, \quad 0 \in D(k_m, k_{m+1}) + \theta_m B \]

with \(\lambda_k = \lambda_{k_m} \). Set \(\lambda_{k_{m+1}} = q \lambda_{k_m} \).
Another very simple COP — ESC stepsize

Objective function convergence.
Another very simple COP — ESC stepsize

Distance to optimum convergence.
Summary

- Diminishing additive disturbances in arguments of Fejer operators does not prevent convergence of locally strong Fejer processes.
- Using attractants one can direct Fejer processes to a specific part of attracting set.
- Sequential and simultaneous projections are Fejer and can be used to decompose/parallelize projective optimization algorithms.
- It looks like that it is possible to have linear-like convergence, but to prove it we need better convergence theory.