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Outline

@ Motivations
@ Convex feasibility problem
@ Convex optimization problem

© Fejer processes
@ Fejer processes with arbitrary perturbations
@ Fejer processes with attractants
@ Convergence theory

© Decomposition and parallel computations
@ Sequential projection
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Motivations Convex feasibility problem

Convex optimization problem

Very simple CFP

T2

Find a point in the set

2x1+x <0 T,
—2x1+x <0
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Motivations Convex feasibility problem

Convex optimization problem

Very simple CFP, X = X1 N X>.

T2

Find a point in the set

2x1+x <0 A %
—2x1+x <0
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Motivations Convex feasibility problem

Convex optimization problem

Very simple CFP,X = X N X5, sequential projection.

Find a point in the set >ﬁ1<x”)z]

2x1+x <0 : T
—2x1 +x <0
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Convex feasi y problem

Convex optimization problem

Very simple CFP — sequential projection
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Motivations Convex feasibility problem

Convex optimization problem

Very simple CFP — simultenious projection

Find a point in the set

2x1+x <0 £
—2x1 +x <0
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Motivations

Convex feasibility problem
Convex optimization problem

Very simple CFP — simultenious projection

Simultenious projections
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Motivations Convex feasibility problem

Convex optimization problem

Projection in optimization and related subjects

Projective equations:
x=MNx(x—AG(x)), A>0

G — (sub)gradient field, variational ineqaulity operator, ...
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Motivations Convex feasibility problem

Convex optimization problem

Projection in optimization and related subjects

Projective equations:
x =MNx(x —AG(x)), A>0
Simple iteration:

X1 = Mx(x* = AG(x¥)), A€ (0,7),
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Motivations Convex fea y problem

Convex optimization problem

Projection in optimization and related subjects

Projective equations:
x=TMx(x —AG(x)), A>0
Simple iteration:

XK =Ny (x* = AG(x), e (0,7),

Disadvantages:

©Q G(x) needs to be strongly monotone;
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Motivations Convex feasibility problem

Convex optimization problem

Projection in optimization and related subjects

Projective equations:
x=MNx(x—AG(x)), A>0
Simple iteration:

X1 = Mx(x* = AG(x¥)), A€ (0,7),

Disadvantages:
© G(x) needs to be strongly monotone;
Q difficult to implement for nontrivial X;
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Motivations Convex feasibility problem

Convex optimization problem

Projection in optimization and related subjects

Projective equations:
x =MNx(x —AG(x)), A>0
Simple iteration:

XKL= M (xK = AG(x¥)), Ae(0,7),

Disadvantages:
@ G(x) needs to be strongly monotone;
Q difficult to implement for nontrivial X;

© low rate of convergence.
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Motivations Convex feasibility problem

Convex optimization problem

Very simple COP

Solve the optimization
problem:

min (—x2) = min cx
2x1+x <0
—2x1 +x <0

Ty
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Motivations Convex feasibility problem

Convex optimization problem

Very simple COP — sequential projection

0

e Lo .
Solve the optimization \“\V></,LI—HM“AC>
problem: 2y = Thy(y — A ,
min (—x2) = min cx
2x1+x <0 "
—2x1 +x <0
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Motivations -
Convex asibility problem

Convex optimization problem

Very simple COP — sequential projection
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Motivations e
Convex feasibility problem
Convex optimization problem

Very simple COP — harmonic stepsize
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Harmonic stepsize
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KL — My (xX = M),k =0,1,..., M\ = c/k.

X =
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants
Convergence theory

Fejer operators

T

Definition. An operator F will be called B()
Fejer if for any x ||F(x) — v| < [|x — v|| |
forallve V,xex+ U.

Definition. Fejer operator F will be called
locally strong if for any x ¢ V there exists

a neighborhood of zero U and small enough

a € [0,1) such that |F(x)—v| < alx—v| .,
forallve V,xex+ U.
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants
Convergence theory

Fejer processes

Xk = F(xK), k=0,1,... (1)
where F is a Fejer operator of any kind.

Theorem. Let V — closed and bounded, F — locally strong Fejer,
and sequence {x¥}, obtained by (1) with some arbitrary x°,
bounded. Then all limit points of {x*} belong to V.
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants
Convergence theory

Perturbed Fejer processes

Fejer process with small perturbations:

XK= F(xk+ 24 k=0,1,... (2)

Theorem. Let V — closed and bounded, F — locally strong Fejer,
the sequence {xk}, obtained by (1) with arbitrary x9, is bounded,
zK — 0 when k — oco. Then all limit points {x*} belong to V.
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants
Convergence theory

Collections of Fejer operators

Theorem. Let & = {F1, F,,...,Fn} is a finite collection of
operators F; such that for any x ¢ V there exists F; locally strong
Fejer at x, z¥ — 0 when k — oo and Fy, = Fi., where F;, — locally
strong Fejer at x. If the sequence {x*}, constructed by

Xk = F(xk+25), s=0,1,... (3)
is bounded then all its limit poins belong to V.

Question: What about infinite families ?
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants

Convergence theory

Attractants

Definition. Point-to-set mapping G : VV — 2F is callled a locally
strong attractant ( of some Z C V) if for any x' € V' \ Z there is
a neighborhood of zero U such that g(z — x) > 6 > 0 for all
zeZ,xex +U,g € d(x) and some § > 0.
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants
Convergence theory

Fejer processes with attractants

Stationary:

XM= F(x* + A\eg"), g5 € G(x). (4)
Nonstationary:

XKL = F(xK + \gh), g* € G(x5). (5)

It follows from above that (4) as well as (5) converge to V if
A — 0 when k — oo.
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Fejer processes with arbitrary perturbations
Fejer processes Fejer processes with attractants
Convergence theory

Convergence to Z

Theorem. Let F is a locally strong Fejer operator, G — locally
strong attractant Z C V', upper semicontinuous on some open
V O V and sequence {x*}, obtained by

XML = F(xXK 4+ Mgh), g5 e G(x9), (6)

where initial state x° arbitrary, A\ — +0,3 A\ = oo. If {xk}
bounded then any limit point {x*} belongs to Z.
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Sequential projection
Decomposition and parallel computations

Fejer projective operators

Touka x "far” from V . Touka x "nearby” V .
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Sequential projection
Decomposition and parallel computations

Sequential projection

Let
V = mTE T VT7

V., 7 € T — convex closed subsets of E.

Theorem. Let V — closed bounded set, which can be represented
as an intersection of a finite family of convex sets V = N c1V;
and denote as N.(x) = x; the orthogonal projection of x onto V.
If x ¢ V. for some 7/ € T, then the operator F = ./ is locally
strong Fejer at x.
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Sequential projection
Decomposition and parallel computations

Sequential projection gradient method

The problem:
: N
Sequential projection gradient method:

Xkl = Fk(xk — )\kgk), gke 8f(xk)

rae Fi(x) = M; (x), a ix Takoro, uto x* ¢ V.
General theory asks for

Can we do better ?
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Sequential projection
Decomposition and parallel computations

Envelope stepsize control (ESC)

Algorithm model:
Xkl = xk — N d*, d*¥ e D(x9),

D(x) — usc set-valued mapping. Let D(p,q) = co{d*,p < t < q}.
Given
0<0,—+0,m=0,1,... and g € (0,1)
define {k,} and stepsizes {\x} as follows:
@ Set kg = 0 and pick up initial \g > 0.
@ For given m and k, determine k1 as the index which
satisfies conditions

0 ¢ D(km,S) + O0mB, km < 5 < Kkm+1,
0 € D(km, km1) + 0mB

with A\, = )\km' Set )\km+1 = q)\km.



Sequential projection
Decomposition and parallel computations

Another very simple COP — ESC stepsize
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10 Envelope stepsize control
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Sequential projection

Decomposition and parallel computations

Another very simple COP — ESC stepsize
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Sequential projection
Decomposition and parallel computations

Summary

@ Diminishing additive disturbances in arguments of Fejer
operators does not prevent convergence of locally strong Fejer
processes.

@ Using attractants one can direct Fejer processes to a specific
part of attracting set.

@ Sequential and simultenious projections are Fejer and can be
used to decompose/parallelize projective optimization
algorithms.

o It looks like that it is possible to have linear-like convergence,
but to prove it we need better convergence theory.
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