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Problem Origin

Once upon a time there was a transportation company which
operated the fleet of of more than 50000 railroad cars over the
territory more tnan 17 min km®. To make it efficiently the company
finaly decided to advance its decision support system with the

mathematical core aimed at profit maximization ...
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Challenges

The key part of this core are more or less traditional linear optimization
problems but their shear size makes them unsolvable in practice by
off-the-shelf solvers. The plethora of models in production use looks like
follow

Planning horisont (days) 5 10 15
Variables 20108202 53404781 77679826
Constraints 210580 385322 559957
Nonzeros 58570131 107412709 152218630
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Model: Balance Constraints (Part 1)

1,2,..., T —days under consideration;
S — stations, K — car types, E — empty car routes, @ — departure schedule;

X,y,z — variables; q, 7, 60,0 — input parameters.

Daily Dynamics of the Railway Car Flows:
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Model: Balance Constraints (Part 2)

X,y,Z — variables; g, 7,0, O — input parameters.

Daily Dynamics of the Railway Car Flows:
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Model:Objective Function

F(x,y,z,...) = F1(2) — Fa(x) — F3(y) +

@ Total Revenue from Loaded Cars
Z Z Z (pO gl o) ok/'
(t,0)eQ keEK i=—0,

@ Total Cost from Empty Cars
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@ Total Cost from Idle Cars
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New ideas

Projection algorithm:

min cx < min |x —x°)% x¢ =x% — 7c.

xeP xeP
Via exact penalty function:

min [x|* < min {|Ix]®+ (K)x} < min {llx—al*}
xeP X xeK

K — the polyhedral cone (dep on ¢, P,a = (0,0,...,0,1)).
Very brief history and news:

@ Nurminski, E.A.: Single-projection procedure for linear optimization. Journal
of Global Optimization 66(1), 95--110 (2016)

@ Bui, Hoa T., Ryan Loxton, and Asghar Moeini: A note on the finite
convergence of alternating projections. Operations Research Letters 49.3
(2021): 431-438.
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Demonstration test

We illustrate solution of LP-problems with a tiny example:
min —10x; — 9xy
subjected to general constraints

4X1 + 3X2 < 5
8x1 + 3x < 9
2x 1 — 6X2 < 3

and nonnegativity constraints xi, xp > 0.
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test

T (30,27)

Ty

Simplex Single-projection procedure, 6 = 3
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Bicomposition

Closer look at optimization prob- Lt
lem:

mincx < min ||z — p||?
Aex = bg xe K+ L,
ALX S bL

or = (p 4 L) L (K L L).

(LL) (K LL)

\piL
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Auxiliary projections

The basic operation:

min ||z — p||> =|lp | L—p|
zel

where L = {z = Agw,w € E™} = AgE™.
Analytical solution

plL=ALAcAD) Y Aep = AL(RRT) 1 Aep

can be converted into the sequence of matrix-vector operations with sparse
matrices

u=Aep — (RRN\w=u — plL=Alw
which can be done very quickly and Cholessky factor R can be reused.
Execution times:
@ R — 122347 x 122347, 73253479 nonzeros (0.48%), time 3.517 sec.
o AcAL — 30006369 nonzeros (0.2%), time 2.056 sec.
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Key problem

The final step:
min ||z —pc|* = |z — pe|?
ze K,

No closed form solution, iterative methods.
QP-formulation (assuming K; = Co(2K k =1,2,...):

min ||z — pu||?
Z|] = Z kak
vi >0

looks hopeless.

More or less workable — conical extension of iterative algorithm of
polytope projection (Nurminski E.A., Computational Mathematics and
Mathematical Physics, Vol. 45 No. 11, 2005, pp. 1915-1922) which
OCTAVE implementation lived through tens of refinements and
modifications, see DOI: 10.13140/RG.2.2.12814.08002.
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Projection tests

The parameters of projections problem solved in series of experiments.

nn  Gener Dim Iterations Optimal base Optimality

1 150 130 109 94 3.01-10°13
2 550 430 325 303 4.47-10712
3 850 630 457 441 2.84-10712
4 1500 830 651 647 2.22-10715
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Convergence of the cone projection algorithm
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Dense problems

Tests with dense inequalities-only problems
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Runtime vs problem size

Solid line — CPLEX, crosses — projection algorithm.
Data size measured in 10° double precision (8 bytes) numbers.
Rows-columns ratio is 3 : 1.
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Conclusions

By any means this is the work in progress. Many technical problems still
have to be solved, but it looks like it is a promissing direction for solving
giga-scaled linear optimization problems.
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