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Problem Origin

Once upon a time there was a transportation company which

operated the fleet of of more than 50000 railroad cars over the

territory more tnan 17 mln km2. To make it efficiently the company

finaly decided to advance its decision support system with the

mathematical core aimed at profit maximization ...
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Challenges

The key part of this core are more or less traditional linear optimization
problems but their shear size makes them unsolvable in practice by
off-the-shelf solvers. The plethora of models in production use looks like
follow

Planning horisont (days) 5 10 15

Variables 29108202 53404781 77679826
Constraints 210580 385322 559957
Nonzeros 58570131 107412709 152218630

E.Nurminski, N.Shamray Row-Oriented Decomposition in Large-Scale Linear Optimization 4 / 1



Model: Balance Constraints (Part 1)

1, 2, . . . ,T – days under consideration;
S – stations, K – car types, E – empty car routes, Q – departure schedule;
x , y , z – variables; q, τ, θ, σ – input parameters.

Daily Dynamics of the Railway Car Flows:

y tsk − y t−1
sk −

∑
r ∈ E :

r = (· → s)

x t−θrrk +
∑

r ∈ E :
r = (s → ·)

x trk−

−
∑

(ς − τr(o), o) ∈ Q :
r(o) = (· → s)

σo∑
i = −σo :
ς + i = t

z ς−τroki +
∑

(ς, o) ∈ Q :
r(o) = (s → ·)

σo∑
i = −σo :
ς + i = t

z ςoki = qtsk

s ∈ S , k ∈ K , t ∈ 1, 2, . . . ,T .
|S | = 1045, |K | = 32,T = 10

E.Nurminski, N.Shamray Row-Oriented Decomposition in Large-Scale Linear Optimization 5 / 1



Model: Balance Constraints (Part 2)

x̄ , ȳ , z̄ – variables; q̄, τ, θ, Ō – input parameters.

Daily Dynamics of the Railway Car Flows:

ȳsk − yTsk −
∑
r ∈ E

r = (· → s)

T∑
t = 1

t + θr > T

x trk −
∑
r ∈ E

r = (· → s)

x̄rk +
∑
r ∈ E

r = (s → ·)

x̄rk−

−
∑

(t − τr(o), o) ∈ Q :
r(o) = (· → s)

σo∑
i = −σo :
t + i > T

z
t−τr(o)

oki −
∑
o ∈ Ō

r(o) = (· → s)

z̄ok+

+
∑
o ∈ Ō

r(o) = (s → ·)

z̄ok = q̄sk , s ∈ S , k ∈ K .
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Model:Objective Function

F (x , y , z , . . .) = F1(z)− F2(x)− F3(y) + . . . .

Total Revenue from Loaded Cars

F1(z) =
∑

(t,o)∈Q

∑
k∈K

σo∑
i=−σo

(po − ξlr(o))z toki ;

Total Cost from Empty Cars

F2(x) =
T∑
t=1

∑
r∈E

∑
k∈K

(cr + ξlr )x trk ;

Total Cost from Idle Cars

F3(y) =
T∑
t=1

∑
s∈S

∑
k∈K

λsy
t
sk .
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New ideas

Projection algorithm:

min
x ∈ P

cx ↔ min
x ∈ P

‖x − xc‖2, xc = x0 − τc.

Via exact penalty function:

min
x ∈ P

‖x‖2 ↔ min
x
{‖x‖2 + (K )x} ↔ min

x ∈ K
{‖x − a‖2}

K — the polyhedral cone (dep on c ,P, a = (0, 0, . . . , 0, 1)).
Very brief history and news:

Nurminski, E.A.: Single-projection procedure for linear optimization. Journal
of Global Optimization 66(1), 95-–110 (2016)

Bui, Hoa T., Ryan Loxton, and Asghar Moeini: A note on the finite
convergence of alternating projections. Operations Research Letters 49.3
(2021): 431-438.
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Demonstration test

We illustrate solution of LP-problems with a tiny example:

min−10x1 − 9x2

subjected to general constraints

4x1 + 3x2 ≤ 5
8x1 + 3x2 ≤ 9
2x1 − 6x2 ≤ 3

and nonnegativity constraints x1, x2 ≥ 0.
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test
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9)

Single-projection procedure, θ = 3
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Bicomposition

Closer look at optimization prob-
lem:

min cx
AEx = bE
ALx ≤ bL

↔ min ‖z − p‖2

x ∈ KL + L⊥

or z? = (p ↓ L) ↓ (K ↓ L).

L

L⊥

K

K ↓ L

p

p ↓ L

(p ↓ L) ↓ (K ↓ L)
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Auxiliary projections

The basic operation:

min ‖z − p‖2

z ∈ L
= ‖p ↓ L− p‖2

where L = {z = ĀEw ,w ∈ Em} = AEE
m.

Analytical solution

p ↓ L = AT
E (AEA

T
E )−1AEp = AT

E (RRT )−1AEp

can be converted into the sequence of matrix-vector operations with sparse
matrices

u = AEp → (RRT )w = u → p ↓ L = AT
E w

which can be done very quickly and Cholessky factor R can be reused.
Execution times:

R – 122347× 122347, 73253479 nonzeros (0.48%), time 3.517 sec.

AEA
T
E — 30006369 nonzeros (0.2%), time 2.056 sec.
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Key problem

The final step:
min

z ∈ KL

‖z − pL‖2 = ‖zL − pL‖2

No closed form solution, iterative methods.
QP-formulation (assuming KL = Co(ẑk , k = 1, 2, . . . ):

min
zL =

∑
vk ẑ

k

vk ≥ 0

‖zL − pL‖2

looks hopeless.
More or less workable — conical extension of iterative algorithm of
polytope projection (Nurminski E.A., Computational Mathematics and
Mathematical Physics, Vol. 45 No. 11, 2005, pp. 1915-1922) which
OCTAVE implementation lived through tens of refinements and
modifications, see DOI: 10.13140/RG.2.2.12814.08002.
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Projection tests

The parameters of projections problem solved in series of experiments.

nn Gener Dim Iterations Optimal base Optimality

1 150 130 109 94 3.01 · 10−13

2 550 430 325 303 4.47 · 10−12

3 850 630 457 441 2.84 · 10−12

4 1500 830 651 647 2.22 · 10−15

E.Nurminski, N.Shamray Row-Oriented Decomposition in Large-Scale Linear Optimization 14 / 1



Convergence of the cone projection algorithm
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Dense problems

Tests with dense inequalities-only problems

min
AL ≤ bL

cx
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Projection vs Cplex

Runtime vs problem size

Solid line — CPLEX, crosses – projection algorithm.
Data size measured in 105 double precision (8 bytes) numbers.
Rows-columns ratio is 3 : 1.
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Conclusions

By any means this is the work in progress. Many technical problems still
have to be solved, but it looks like it is a promissing direction for solving
giga-scaled linear optimization problems.
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