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Abstract. A solution algorithm is proposed for problems of nondifferentiable optimization of a family

of separating plane methods with additional clippings generated by the solution of an auxiliary

problem of the cutting plane method. The convergence of this algorithm is proved, and the results of

computational experiments are given that demonstrate its overall computational efficiency compared to

that of well-known leaders in this field. Transportation-type problems with constraints on flows are

reduced to problems of projection of a sufficiently remote point onto an admissible set.
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INTRODUCTION

Let x x x
n

� ( , , )

1

� be a vector of an n-dimensional Euclidean space �

n
with the usual scalar product xy. In �

n
, the

following problem of unconstrained convex nondifferentiable optimization (NDO) is considered: min ( )

x
n

f x

� �

, where f x( ) is

a convex nondifferentiable function. We consider that this problem is solvable.

Such problems arise in various scientific and technical fields, for example, in solving problems of continuum

mechanics with allowance for friction [1], control theory [2], economy [3–5], etc. Moreover, the progress in the field of

development and implementation of NDO methods makes it possible to construct more efficient methods for solving

high-dimensional optimization problems.

This article is devoted to the further investigation of the efficient method from [21] for solving problems of

multidimensional convex NDO without constraints that does not require additional information on the internal structure

of the function being optimized and is a representative of the so-called black-box optimization. We suppose that the entire

accessible information on the objective function f x( ) of a problem is provided by a subgradient oracle, and, at an arbitrary

point x
n

�� , only the value of the function f x( ) and a subgradient g f x�� ( ) arbitrarily chosen from the subdifferential

�f x( ) of the function f x( ) can be found.

Oracle-type schemes for minimizing smooth and nonsmooth functions have essential distinctions. Oracles of

differentiable functions allow one to construct convergent minimizing relaxation sequences (see, for example, [6]). For

nonsmooth functions, this possibility is inapplicable in principle since an arbitrary chosen subgradient does not determine the

relaxation direction [7]. In actual fact, methods of convex NDO use only separability properties, which considerably

decreases their convergence rate.
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In [8], lower bounds are found for complexity estimates of the methods using only oracles for different classes

of optimization problems. It turned out that, for the class of convex NDO problems being considered, any method whose

convergence rate is larger than O q
k n

( )

/

is absent, where q �1 is an absolute constant and k is the number of iterations of the

corresponding method. In any of such methods, any convergence rate estimate uniform with respect to the space dimension n

cannot be better than a rate estimate of order ofO k( )

/�1 2

. It is proved that the center-of-gravity method [10, 11] and subgradient

method [32] have such convergence rates. Thus, the two first methods developed for solving nonsmooth minimization problems

turned out to be unimprovable with respect to their convergence characteristics. In practice, the center-of-gravity method is

inapplicable since the operation of finding the center of gravity of a convex set in a multidimensional space is a very complicated

problem. The subgradient method proposed for the first time by N. Z. Shor [32] has the simplest computational scheme

x x g g f x kk k k k k k�

� � �� �
1

0 1� , ( ), , ,� ,

and converges under very acceptable conditions. Its practical computational efficiency depends on methods of control

of stepsizes � . The best choice law for a stepsize � is recognized to be the B. T. Polyak law [12] but under the

condition that the optimum value is known in advance. Among other methods of step adjustment, the technique from

[13] can also be mentioned. The subgradient method with this step regulation has shown a practically linear

convergence rate in the case of well-known tests. However, it should be noted that this statement about the

convergence rate of NDO methods is uniformly valid with respect to the dimension of the space of variables. More

efficient schemes can be developed for moderate-dimensional problems [9].

The next stage of the development of NDO methods became the emergence of the so-called bundle methods [14–16]

whose representative is the level method [17] developed in 1995. Among recent publications in the field of bundle methods,

mention may be made of the idea of splitting into subspaces of smoothness–nonsmoothness, which is called the VU-algorithm

[18]; in the field of NDO methods without oracles, we note a special technique of smoothing with the subsequent application of

gradient schemes of smooth minimization [19] for nonsmooth functions with a definite structure [20].

The projection algorithm SPACLIP for solving problems of minimization of nonsmooth functions that is proposed in

this article is a result of the further development and improvement of separating plane methods [21–23] that have a number

of important theoretical and computing features.

In computational experiments, the SPACLIP algorithm was used for solving the transportation problem that not only

is one of the most widespread in economic applications but also has definite symbolic importance since the development of

NDO began exactly with problems of this type [37].

In the matrix statement of this problem, which is considered in this article, upper and lower bounds are imposed on

volumes of deliveries, which complicates the application of the method of potentials and simplex method to the solution

of such problems and especially high-dimensional problems. Of definite interest is the reduction of the transportation

problem to the problem of finding the projection onto a shift of the admissible set.

PROJECTION ALGORITHM SPACLIP

Separating plane methods [21] are based on the idea of replacement of the initial minimization problem by the

problem of computing the Fenchel–Moreau conjugate at zero,

f x f x x f x f

x x
n

( ) min ( ) { ( )} ( ) ,

* *

� � � 	 � � �

��

sup 0 0 x f*

*

( ) ,�� 0 (1)

where the function f g gx f x
x

*

( ) sup{ ( )}� � is the Fenchel–Moreau conjugate of f x( ). Problem (1) can be interpreted as

the problem of finding the point of intersection of the plot of the conjugate with the vertical line 0
 �
�

(Fig. 1). We

consider that f ( )0 0� and that the origin of coordinates of the space of primal variables is not the solution of the

minimization problem, i.e., f x( )

*

� 0. In Fig. 1, the dotted line represents the plot of the conjugate f g
*

( ). The support

vector of the tangent hyperplane at the point ( , ( ))

*

0 0f to the epigraph of the conjugate determines the solution of

problem (1) up to normalization.
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In the separating plane method (SPM), the epigraph of the conjugate f
*

is approximated by internally and externally

convex polyhedral sets D andU (Fig. 2). Refining these approximations at each iteration in the neighborhood of the vertical

line 0
 �
�

, we obtain convergent lower w and upper � estimates for f
*

( )0 .

The sets D and U are modified by the addition of clippings (forU) or new points ( , ( ))� �g located on the plot of f
*

.

The basic version of the SPM does not guarantee monotonicity, especially in the case of nearing an extremum.

To improve the monotonicity property of the method, we introduce the following additional clipping with respect to the

upper-bound estimate � obtained from the internal approximation of the epigraph (see Fig. 2) for the value of f
*

( )0 :

� � � �
� � �

� � � �

� � �

min min ( ) min .

( , )
( , )

*

( , )

*

0
0

0

0

D f U

f

epi

This clipping more precisely localizes a priori potential points of the epigraph of f
*

that are added later on in refining

its approximation.

In the computational aspect, the value of � can be obtained as the solution of a linear programming problem and is

an estimate found by the Kelly cutting plane method [36],

� �
�

� �

� �

�

� � 
�

�

�

min min

( , ) (( , ( )),

, , , )

*

0

1 2 0

co g f g

k m

k k
k

�

f g

g

gk

k

m

k k

k

m

m

k k

k

m

m

*

( ),

,

,

min

�

�

�

�

�

�

�

�

�

�

�

1

1

1

0

0

�

�

�

�

� �







k k

k

m

f g
*

( )

�

�

1

� � � �

�

�

�
max min ( ( ) ) maxmin{ ( )

* *

x
k k k

k

m

x k
k

m

f g xg f g xg
�

�



1

k }

� � � � � � �maxmin{ ( ) } min max{ ( ) ( )

x k
k k k k

x k
k k kx g f x xg f x x x g }, (2)

where � � �� ( , , )

1

� m and 
m is the standard simplex, 
m k k

k

m

k m� � � �

�

�

�

�

�

��

�
� �0 1 1

1

, , , ;� .

The addition of the next point to the approximation of epi f
*

in this clipping lies in the solution of the problem of

construction of the supporting hyperplane to the truncated epigraph of f
*

,

sup { }

( )g, f
*

gx

�

� �

�

�

�

�

epi

. (3)
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Fig. 1. Graphical interpretation of problem (1).
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Fig. 2. Illustration of the standard separating

plane method.
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This problem differs from a similar problem of refining an approximation of the epigraph of a conjugate function in

the standard SPM by the presence of the additional constraint � �� . In this respect, the algorithm is similar to the level

method [17] but differs from it in that approximations are constructed in the extended space �

�n 1

. Fig. 3 illustrates the

idea of this additional clipping.

As well as in the standard SPM, problem (3) can be easily transferred to the space of primal variables x
n

�� , but, in

this case, an auxiliary one-dimensional minimization problem arises with a rather unexpected objective function. In fact,

introducing a dual variable � for an additional constraint, we obtain

sup sup inf

epi( , ) ;

*

*

{ } { ( ) (

g f g

gx gx f g f

� � � �

� � �

� � �

� � � � �

0

*

( ))}g

� � � � � � �

�� �

inf sup inf

� �

�� � �� �
0 0

1 1

1

{ { ( ) ( )}} ( )

*

g

gx f g f
x

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � �

�

�

�

� � � � � � �
� �

inf inf

1

1

1

{ ( ( ))} ( , )f x x . (4)

It is easy to show that the function � � � � �( , ) ( ( ) )x f x� �

�1

is convex with respect to the collection of variables ( , )� x .

An upper estimate for � �� � � � �( ( ) , ( ) )

1 2

1 1� � � �x y , where 0 1� �� , can be obtained using the following Jensen

inequality for f :

� �� � � � � �� � �
� �

��
( ( ) , ( ) ) ( ( ) )

( )

1 2 1 2

1 1 1

1

� � � � � � �

� �

x y f
x y

1 2

1� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

( )� �
�

� � �

� �

	 �

�

� �

( ( ) )

( )

( )

( )

�� � �
��

�� � � �

� �

�� �
1 2

1

1 2 1

2

1

1

1

1

1

f
x

� �
�

2 2

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��
�

� � �
�

�
1

1

2

2

1f
x

f
x

( )
�

�

�

�

�

�

� � ��� � � � �( , ) ( ) ( , )

1 2

1x y .

Thus, the function � �( , )x is convex with respect to the set of variables ( , )� x and, hence, also with respect to the

variable �. �

It is proposed to solve one-dimensional NDO problem (4) with the help of the fast one-dimensional search algorithm

[27, 28] since it can achieve superlinear or even quadratic convergence rates under favorable conditions. A special

implementation of the fast one-dimensional search algorithm was created for the SPACLIP algorithm.

As a result, the algorithm of the separating plane method with clippings (SPACLIP) is of the following form.
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Fig. 3. Illustration of the SPACLIP–SPM

algorithm with additional clippings.
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Step 0. Initialization. Set the counter of iterations k � 0 and determine the initial point x
0

of the minimizing

sequence.

Step 1. Find inf

0�

�

U
k

k ( )�

� � , whereUk is the kth external approximation of the epigraph of the conjugate f
*

. This

problem can be solved recursively as follows:

� � �
� � � �

k
U U g gx f xk k k k

� �

� � � � �
� � �

inf inf

0 0

1 1 1

( ) ( ) ( , ) | ( )

�

�

�

�

�

�

�

� �

� ��

�

� �

max , max{ ,

( ) ( )

inf inf

0

1

1 1

U f x
k

k k

f
� �

� � � ( )},x kk�

�
1

1.

(5)

In this case, we can consider that �
0

� � �. In fact, � �k is the record of the function f .

Step 2. Find the vector z z
k k

k� ( , )	 , i.e., the projection of the point ( , )0 �k onto the polyhedron Dk of internal

approximation of the epigraph of the conjugate,

z P
k

D kk
� (( , ))0 � ,

where P aX ( ) is the solution of the problem of projection of a point a onto a set X .

To solve this problem, the suitable affine subspace method from [26] is used. This finite method solves the problem

of finding the vector of minimum length in a polyhedron of a finite-dimensional Euclidean space and possesses the global

convergence rate that is “better than linear.”

Step 3. Compute the next approximation to the solution of the problem min ( )

x
n

f x

� �

as follows:

x zk

k

k� � / 	 .

As a result of this normalization, the last coordinate in x z xk

k

k k� � � �/ ( , )	 1 will be equal to �1, which is the

required result (see Fig. 1).

Step 4. Find �, i.e., the level of clipping the upper part of the epigraph epi f
*

; to this end, linear programming

problem (2) should be solved. Note that this clipping does not prevent the solution of the problem of projection onto Dk at

step 2 and, hence, the construction of an approximate solution xk .

If problem (2) has no solution, go to step 7.

Step 5. Solve one-dimensional NDO problem (4). Let � k be a solution found at the kth iteration of solving this

problem.

Step 6. Modify the approximation xk by the formula x xk k k�

�

�
1

.

In contrast to the SPM, when the next point is added to an approximation epi f
*

during the operation of the

SPACLIP algorithm, the subgradient of the function being optimized is computed not at the point x being tested but at

the point �
k
x

�1

scaled with respect to x.

Step 7. Add the pair ( ( ), ( ))

*

g f x f gk k k� � to the polyhedron Dk .

Step 8. If any of the completion conditions of the algorithm is fulfilled, then complete its operation. Otherwise,

increment the counter of iterations k by one and go to step 1.

The next sections contain the proof of convergence of this algorithm and computational results.

CONVERGENCE OF THE METHOD

The convergence of the projective separating plane algorithm with clippings is substantiated by the following theorem.

THEOREM 1. Let f x( ) be a finite convex function, let f ( )0 0� , and let �
*

min ( )� � � � �f x � . Then

lim

*

k
k

��

�� � .
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Proof. We can prove by induction that �k f�

*

( )0 for any k.

In fact, this inequality is satisfied by k � 0. According to recursion (5), we have � �k k kf x� �
� �

max{ , ( )}

1 1

. Making

the inductive step and taking into account that � � 	 � � 	 � �
� � �

f x x f x x f x fk k k

x

( ) ( ) { ( )} ( )

*

1 1 1

0 0 0sup , we obtain

�k f f f� �max{ ( ), ( )} ( )

* * *

0 0 0 , which is what had to be proved.

Since �k f�

*

( )0 and z D Dk k k k� � �( , ) { }0 � co , to prove the statement of the theorem, it suffices to show that

|| ||zk
k

�

��

0 since this means that � �

��

f x fk
k

( ) ( )

*

0 .

To prove the monotone decrease in the norm of vectors || ||zk , we consider several cases.

1. At step 4, problem (2) has no solution for all k. Then we can consider that � � � and the SPM with additional

clippings is transformed into the standard SPM whose convergence is proved in [25].

2. Problem (2) has a solution at step 4. Denote by xk the solution to problem (3), x xk k k k� �

�

� �
1

1, . Then the vector

zk is representable in the form z r xk k k k� � �

�

( , )�
1

1 .

Depending on whether the current record of the objective function �k changes at the kth iterations, two versions are

possible.

Version 1. � �k k�
�1

. Then the projection is carried out from the same point || || min || ||

( , )

z zk
z Dk k

2

0

2

�

� �

 

� co

�

� �
� �

 

min || ||

( , )z Dk k

z

0

2

1 1

� co

. Here, Dk

 

is a polytope obtained at the kth iterations after clipping (3). In this case, the following

inequality holds:

|| || min || ( , ( )) ||

[ , ]

*

z z g f g zk k k k k

2

0 1

1 1

2

� � �

�

� �

�

� .

The solution of the problem min || ( , ( )) ||

[ , ]

*

�

�
�

� �

� �

0 1

1 1

2

z g f g zk k k k is the projection of the minimum of

a one-dimensional quadratic function onto the interval [ , ]0 1 ,

�
* * *

min {( ( , ( ))) || ( , ( )) ||/� � �
� � �

z g f g z g f g zk k k k k k k1 1 1

2

1, }.

Then, for any

� �

�

�

� �

�

( ( , ( )))

|| ( , ( )) ||

*

*

z g f g z

g f g z

k k k k

k k k

1 1

1

2

, (6)

the inequality || || || (( , ( )) ) ||

*

z z g f g zk k k k k

2

1 1

2

� � �
� �

� holds.

After exponentiation, we obtain

|| || || || (( ( , ( ))) || (

*

z z z g f g z gk k k k k k

2

1

2

1 1

2

2

� � � �
� � �

�
�

k k kf g z, ( )) || ) .

*

�
�1

2

(7)

According to inequality (6),

( ( , ( ))) || ( , ( )) ||

* *

z g f g z g f g zk k k k k k k� � �

� � �
1 1 1

2

2

�

� � !
�

�

2

0

1

2

|| ( , ( )) ||

*

g f g zk k k when � " 0.

To prove the monotone decrease in the norm of vectors || ||zk for version 1, it suffices to take into account in

inequality (7) that the subtrahend in the right side is positive with respect to the last inequality, || || || ||z zk k

2

1

2

�
�

.

Version 2. � �k k kf x� � !
� �

( )

`1 1

. Then

|| || min || || || ||

( , )

z z zk
z Dk k

2

0

2 2

� �

� �

 

�
�

co

,

(8)

where z z z
k

k

k k�

�

�
�

�

�

�

�

� �

�

�
1

1 1

.
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As is easily seen, the last inequality in formula (8) is fulfilled when z � is defined in this manner. Hence,

|| || || ||z zk k

2

1

2

�
�

.

The monotonicity of the norm of vectors || ||zk implies the existence of the limit lim || ||

k
k
z

��

� 
.

To prove that 
 � 0, suppose the contrary. Let || ||z rk k� � for some � ! 0.

The following equality holds:

lim (( , ( )) ( , )) || ||

*

k
k k k k kg f g z z

��

� �#
� �

$
�

1 1

2

0 0� .

Suppose the contrary. Let, for some subsequence, we have (( , ( )) ( , )) || || ,

*

g f g z zk k k k k �  �    

� � � !
1 1

2

0 0� � � .

Then

|| || min

( , ) {{( , ( )), , , ,

*

zk
z g f g i kk i i

 �

� � �  

�

 

1

2

0 0 1� co � �1 0

2

}, ( , )}

|| ||

�

z

�

� � � �
   �  �

min || || ,

( , )

~

( )( , ( ))

*

z g g f gk k k k

z

0 1

2

1 1

� � �

� �[ , ]0 1 .

Taking into account that

~

( , )g zk k k   

� �0 � , we obtain

|| || min || ( ) (( , ( )

[ , ]

*

z z g f gk k k k �

�

  �  �

� � �
1

2

0 1

1 1

1

�

� � ) ( , )) ||�
 

0

2

�k .

(9)

After squaring the right side of inequality (9), we obtain

|| || min { || || ( ) ((

[ , ]

z z z gk k k k �

�

   �

� � �
1

2

0 1

2 2

1

2 1

�

� � � , ( )) ( , ))

*

f g k k �  

�
1

0 �

� � �
 �  �  

( ) || ( , ( )) ( , ) || }

*

1 0

2

1 1

2

� �g f gk k k . (10)

We continue transformations in the right side of inequality (10) as follows:

|| || min { || || ( ) || ||

[ , ]

z z zk k k �

�

  

� � � �
1

2

0 1

2 2 2

2 1 2

�

� � � � � �( )1�

� � �
 �  �  

( ) || ( , ( )) ( , ) || }

*

1 0

2

1 1

2

� �g f gk k k

� � � � � �

�

  �

min {( ) || || ( ) ( ) || (

[ , ]�

� � � � � �
0 1

2 2 2

2 2 1 1z gk k 1 1

2

0, ( )) ( , ) || }

*

f g k k �  

� � . (11)

From inequality (11), the following estimate is obtained:

|| || min { || || ( ) (( ) || (

[ , ]

z zk k �

�

 

� � � � �
1

2

0 1

2 2

2 1 1

�

� � � � g f g zk k k k �  �   

� �
1 1

2 2

0, ( )) ( , ) || || || )}

*

�

� � � � �
 

|| || ( ) ( )zk
2 2 2

2 1 1� � � � � for any � �[ , ]0 1 .

Substituting the expression � � � � �� � � !( ) / ( )

2 2

2 0 in this inequality, we obtain

|| || || || / ( )z zk k �  

� � �
1

2 2 2 2

2� � � . (12)

Proceeding to the limit in inequality (12) as k � �, we obtain a contradiction. Hence,

lim (( , ( )) ( , )) || ||

*

k
k k k k kg f g z z

��

� �#
� �

$
�

1 1

2

0 0� .

Since 0 0 0

1 1

� � � �
� �

( ( , )) ( , ( ))

*

z z g f g zk k k k k k� as k � �, for a sufficiently large k, the inequality

( ( , )) ( , ( ))

*

z z g f g z rk k k k k k k
� � �

� �

0

1 1

2 2

� � holds for any � ! 0. Hence,
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( , ) ( , ( )) ( , ) || ||

*

0 0

1 1 1

2

� � �k k k k k k k k kz g f g z z z r
� � �

� � � �

� � � � �( , ) ( , ) /0 0 2

2 2 2 2 2 2

� � � � �k k k k k k k
z r r z r

for � �� / 2 , i.e., r r rk k k k k
( , ) ( , ) /0 0 2

1

2 2

� � �
�

� � .

Next, f rk k k k

*

( ) ( , ) ( , ) ( , )0 0 0 0

1

2

� � � � �
�

� � � � �, where � �� �rk
2

0, which is impossible as k � �. This

contradiction proves the equality lim || ||

k
kz

��

� 0. The theorem is proved. �

USING THE ALGORITHM SPACLIP TO SOLVE PROBLEMS

OF TRANSPORTATION TYPE

Consider the transportation problem with constraints on volumes of delivery in its standard statement [30, 33].

Assume that m
1

is the number of consumers, n
1

is the number of suppliers, A i ni ( , , )�1
1

� are supplies of products

delivered by suppliers, B j mj ( , , )�1
1

� are consumer needs for a product,

cij is the price of delivery of a product unit from

the ith supplier to the jth consumer, and xij
low

and x
ij

up
are lower and upper bounds on volumes of deliveries xij . We consider

that the problem is balanced, A Bi

i

n

j

j

m

� �

� �
�

1 1

1 1

.

The minimization of transportation expenditures with establishing balances among suppliers and consumers and

imposing two-sided bounds on variables leads to the classical problem of linear programming

min

x X
ij ij

j

m

i

n

ij ij

c x
�

��

��

11

1
1

, (13)

where a set X ij imposes the constraints

x A i n x B j mij

j

m

i ij

i

n

j

� �

� �
� � � �

1

1

1

1

1 1

1 1, , , ; , , ,� � ; (14)

x x xij

low

ij ij

up
� � , i n�1

1

, ,� ; j m�1
1

, ,� , (15)

or, in matrix-vector form, min , { |

x X

cx X x Ax b
�

� � , x x x
low up

� � , b A Bi j� ( , )

T

}.

Instead of problem (13)–(15), we will consider the following equivalent quadratic problem under the same

constraints:

min min

x X
ij

ij

j

m

i

n

x X
ij ij

x
c

x
�

��

�

�

�

�

�

�

�

�

�

�

� �
��

�
�2

2

11

11

c
P

c c
X

� � �

2
2

� �

�

�

�

�

�

�
� , (16)

where P aX ( ) is the result of solving the problem of projection of a point a onto the set X .

Developing the results of [30], it may be proved that there really is some � ! 0 such that, for all 0 � �� �, linear

programming problem (13)–(15) and projection problem (16) are equivalent, and P cX ( )�

�

�
1

solves transportation

problem (13)–(15).

To formulate this result, we will introduce some additional definitions. Let �x X� be some fixed point. Denote by

K z x z Xx� { | � , }� � � !� � 0 the cone of admissible directions at the point �x. If the set X is polyhedral, then the cone K x� is

closed. Denote by K x�
*

the cone dual to the cone K x� , K u uz z Kx x�

*

�

{ | , }� � �0 .

Note that if y x u u K x� � �� ,

�

*

, then, for any x X� , the inequality ( � )( � ) ( � )y x x x u x x� � � � � 0 holds since x x K x� ��

�

.

Therefore, � ( )x P yX� , i.e., �x is the projection of y onto X .

In terms of the introduced notations, this result can be formulated in the following form.
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THEOREM 2. Let transportation problem (13)–(15) have a unique solution �x. Then there is some � ! 0such that

P
c c

x
c

x
c

X
x X

�

�

�

�

�

�

�
� � � � �

�� � � �

2
2 2

min � for all 0 � �� �.

Proof. For �x, we determine the corresponding cones K x� and K x�
*

. By virtue of the uniqueness of the solution, we have

� � �c x x( � ) 0 for any x X� . Hence, � �c K xint

�

*

, which also proves the nonemptiness of the interior int K x�
*

. Then

� � � � � � � � � �

c
x

c
x x x c x z

� � �
�

�
�� � � ( � ) �

1 1

, where z c x K x� �� � � ��

�

*

int for a sufficiently small �. Accordingly,
1

�
�z K x�

�

*

and

� �x P x z P
c

X X� �

�

�

�

�

�

�
� �

�

�

�

�

�

�

1

� �
� , which is what had to be proved. �

The above theorem allows one, under uniqueness conditions imposed on the solution of a linear programming

problem, to reduce it to a special quadratic programming problem with the simplest quadratic form, which considerably

simplifies its solution.

COMPUTATIONAL EXPERIMENTS

Transportation problem with three suppliers. The projection algorithm SPACLIP was implemented on the freely

distributable system Octave of matrix-vector computations [35]. The syntax of Octave is very close to MATLAB, and this

system is a convenient tool for developing pilot versions of computational algorithms and fast prototyping.

After verifying the operability of the implemented algorithm as applied to a number of NDO problems, this method

was applied to the solution of transportation logistics optimization problems with the help of the expedients described in the

previous section.

The transportation problem with three suppliers and four consumers (respectively, n m
1 1

3 4� �, , and the vector x for

this problem had the dimension 3 4% = 12), which is presented in [30], was first solved. The specified tariff matrix { }

,

,

cij i j�1

3 4

was transformed into the vector c � ( , , , , , , , , , , , )7 8 1 2 4 5 9 8 9 2 3 6 . Under the condition of the problem, the supplies of products

amounted to Ai � [ , , ]200 180 190 and needs for products amounted to B j � [ , , , ]150 130 150 140 . The lower bound xij
low

was

set to zero, and the upper bound x
ij

up
� 200 was set to i n j m� �1 1

1 1

, , , , ,� � .

The results of solution of this transportation problem are given in Table 1. In solving the problem, both methods

completed their operation under the condition of closeness to the value of the argument. The condition of closeness of the

gradient norm of the optimal solution to zero was not fulfilled. The value of � from problem (16) coincides with the accuracy

prescribed for the chosen SPM and SPACLIP nonsmooth optimization methods and is presented in the last column of the

table. A decline in the results for � �

�

10

8

is connected with the constraints of the implementation of the Octave language on

digit capacity. On the whole, both methods coped with the solution of this model problem and correctly computed the

optimal distribution of product volumes. The comparison of these results with the results of solution of the problem

from [30] showed that the methods of the family of separating planes are more sensitive to the closeness of the upper bound

x
ij

up
to the solution than Shor’s r-algorithm [32]. The upper bound was taken equal to 200 since, for smaller values, the

algorithms of the family of separating plane algorithms yield a vector combination of given numbers-constraints as

the optimal solution. Such problems did not arise in the case of the r-algorithm. Note that the table contain components of

the optimal solution x whose values are rounded to the nearest integer and, hence, the presented expenditures for the

transportation of products can insignificantly differ from the product c x	 .

Transportation problems of small and large dimensions. After the solution of the model problem, mass testing

of the projection algorithm was performed using a series of small- and high-dimensional transportation problems with

randomly generated data.
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For each of these problems, n m n
1 1

� � ; the tariff vector c was randomly generated as a vector of length n
2

and

consisted of random numbers belonging to the interval [1, 101]. Next, a vector x
opt

of dimension n
2

, i.e., a feasible solution

of the problem (with components from the interval [1, 1001]) was (also randomly) generated. Then the vector b equal to

[ , ]A Bi j

T

was computed by the formula b A x� 	
opt

. The lower and upper bounds on volumes of delivery were specified by

multiplying the feasible solution by 0.1 and 20, respectively. The value of � from problem (16) was equated to the required

accuracy prescribed by the user for the solution of the problem. A random vector of length n
2

with components from the

interval [0, 10] was taken as the initial approximation. Then tests were performed using thousands of problems of the same

type and the obtained results were processed according to the methodology from [34] with constructing performance

profiles.

The performance profile [34] 
s for a method of solving an optimization problem is understood to be the distribution

function of some measurable performance index. The computation of performance profiles makes it possible to visualize

distinctions in the efficiency of several optimization methods.
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TABLE 1. Results of Solution of a Transportation Problem with Three Suppliers with the Help of the SPM and

SPACLIP

Method

Components of the Vector x

Number of

Iterations

Transportation

Expenditures

(13)

�

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

SPM 0 0 61 136 150 27 0 0 0 97 90 0 75 1532 10

4�

SPACLIP 0 0 56 141 146 28 0 0 0 101 87 0 63 1527 10

4�

SPM 0 0 57 136 145 28 0 0 0 104 83 0 60 1506 10

5�

SPACLIP 0 0 55 145 146 24 0 0 0 99 90 0 54 1514 10

5�

SPM 0 0 54 148 148 24 0 0 0 101 83 0 46 1514 10

6�

SPACLIP 0 0 96 167 123 61 0 0 0 166 154 0 53 2024 10

6�

SPM 0 0 65 154 166 19 0 0 0 106 95 0 41 1628 10

7�

SPACLIP 0 0 30 59 81 54 0 0 0 108 200 0 100 1557 10

7�

SPM 0 0 61 152 138 62 0 0 0 103 83 0 35 1680 10

8�

SPACLIP 0 0 200 100 100 0 0 0 0 0 200 0 38 1401 10

8�

Fig. 4. Performance profiles for the standard SPM (SPA), SPACLIP algorithm,

and r-algorithm for a transportation problem with 100 variables.

�
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�

10
10
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Such a distribution function is found as follows:


 � �s

p

p s
n

p P r( ) | : |

,

� � �

1

; r
t

t s S
p s

p s

p s

,

,

,

min { : }

�

�

.

Here, S is the set of the methods being compared and P is the set of problems solved with the help of these methods.

The number of elements in P is denoted by np , and ns is the number of elements in S . In this case, ns � 3 (three

methods are compared including the r-algorithm) or ns � 2 (standard SPM and SPACLIP are compared) and np � 5000.

As the measurable performance index t p s, , the processor time spent for the solution of a problem was estimated.

Testing was performed on a computer under the control of Linux OS, distribution kit openSUSE 12.3 Dartmouth, AMD

Athlon 64 3500+, 2 Gb; interpreter version Octave 3.6.4. The test results are given in Figs. 4–7. Problems were solved with

100 variables (n �10), 10000 variables (n �100), and 40000 variables (n � 200). For each dimension, 5000 transportation

problems were solved.
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Fig. 5. Performance profiles for the standard SPM (SPA), SPACLIP algorithm,

and r-algorithm for a transportation problem with 10000 variables.
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Fig. 6. Performance profiles for the standard SPM and SPACLIP algorithm for

a transportation problem with 10000 variables.
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The analysis of the obtained performance profiles shows that, in solving transportation problems of small dimensions,

the r-algorithm operates faster than the projection algorithm SPACLIP. The standard SPM for problems of such dimensions

also outruns the projection algorithm SPACLIP. It is connected with the lack of need for solving linear programming

problem (2). But the larger the dimension of a problem and required solution accuracy, the greater the advantage of

SPACLIP over other methods.

CONCLUSIONS

In this article, the algorithm SPACLIP for solving convex NDO problems is proposed that belongs to the family of

separating plane methods with additional clippings generated as a result of solution of an auxiliary problem of the cutting plane

method and its convergence is proved. A practical application of the algorithm is considered to be the solution of

high-dimensional transportation problems. Under conditions of a unique solution of a transportation problem, the equivalence

of problems of the projection of a sufficiently remote point onto an admissible set and problems of transportation type is

proved. Computational experiments demonstrate a rather high performance of SPACLIP in solving projection problems.
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