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Accelerated parallel projection method for solving the shortest distance problem 
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Abstract. We consider the problem of finding the 
vector of minimum length in the simplex of 
finite dimensional Euclidean space. A final 
accelerated parallel algorithm for solving this 
problem is proposed. 
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1. Introduction 

The subject of this work is to develop special final procedure for finding the 
projection on the simplest form of a convex polyhedron - simplex and to construct of a 
parallel algorithm for solving this problem. Conducted computational experiments 
demonstrate high computational efficiency ofthe algorithm. 

2. Problem statement 

The objects of study are the subsets and vectors of n -dimensional Euclidean 

space with inner product xy and norm jjxjj2 
= XX • 

Define for a set X c En that can be represented as the union of a family of sets 
N 

{Xk,k = 1,2, ... ,N}, i.e. X= uxk, affine aff(X) and convex co(X) envelopes as 
k=l 

follows: 
n+l n+l 

aff(X) = {x: x = LA;X;, LA;= 1, X; EX, i = 1,2, ... ,n + 1}, 
i=l i=l 

n+l n+l 

co(X) = {x: x = LA;Xp LA; = 1, A;;?: 0, X; EX, i = 1,2, ... ,n + 1}. 
i=l i=l 

The subject of this paper is the solution of the fundamental problem of finding the 
distance from the origin to set Y = co(X): 
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(1) 

The only solution to the problem (1) is a vector z E Y satisfying the following 
condition (in fact, the variation inequality): 

z(x- z) 2:: 0, Vx E Y, (2) 

and the condition (2) is necessary and sufficient. 
The equivalence of ( 1) and the variation inequality (2) provided the basis for the 

development of many of projective algorithms for solving variation inequalities [1 ,4,5]. 

3. The method of affine subspaces 

To solve (1) when N :5 n +I a suitable affine subspaces method has been 
developed [3]. The method starts with the entry of a suitable base I 0 c 3 = {1,2, ... , N} 

and completes its work with the construction of the optimal basis I. c 3 and 

accordingly Y. = co(Xi,i E I.) for which Tei?llzf = ~~nllzll
2

• 

In the course ofthe algorithm a sequence ofbases Ik,k = 1,2, ... , and the 

corresponding sequence of sub-simplexes ~ = co(Xi, i E Ik) wh_ich guarantees the 

monotone decrease of the distance at a geometric rate qpi = minllzll2 
> PL1 = minllzll2 

zeYk zeYk+l 

where q E [0,1) are constructed. 

Iterative transition from the basis Ik to the basis Ik+I is in the following two 

basic steps~ 

Step I. Solve the problem· ~i~llzf = llzk r , where Hk is affine subspace: 

Hk = aff(xi,i E Ik) . If zk satisfies (2) then it is a solution of (I) and the algorithm 

terminates. Otherwise there is a vector xik for which xik zk < llzk 11

2 

and the next step is 

performed. 
Step 2. Initialize inner loop counter s = 0 and begin the inner loop of this step of 

the algorithm. 

Inner loop. Form the test basis I .. = {Ik,ik} and new affine subspace 

H s = aff(x,' i E I.,). Solve an auxiliary projection problem ?l1~11zll2 =liz" r 
If Z 5 

.E Ys = co(xi, i E Is) then we put Ik+l = Is and then move on to the next 

(k +I) -th iteration. Otherwise we set u;. = A;s + (1- A)zk and find the maximum A, 

such as u;., E Y s • By construction, the point u;. when A = A
5 

belongs to the relative 

interior of a minimum face Y.,+I which is defined by a set of its extreme points 
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-
xi ,i E /.H,, where f.a, is a proper subset of Is and z=ei = 1, Bi > 0 for i E f.<+l . 

iEI s+l 

Increase the iteration counter of the inner loop s = s + 1 and repeat the iteration of the 
inner loop of step 2. 

The finite convergence of this method is proved in [2] and its global "better than 
the geometric" rate of convergence - in [3]. 

4. Nested pa1titions method 

In the case of a greater (N > n + 1) number of points in the set X an affine 
subspaces method described above is not applied. To solve the projection problem (1) 
with the condition N > n + 1 a method of nested partitions is suggested. This method is 
based partly on the idea of a parallel projection method [6] but it includes: the first
dichotomy of the set X and the second- the fact that the partition of X can vary from 
iteration to iteration. The first fact makes it possible to apply the affine subspaces method 
and the second - to accelerate significantly the convergence of algorithm up to guarantee 
finiteness in contrast to ( 6]. 

Consider the dichotomy of X to I; and 1'; , where I; = co( xi, i E I,) , 

1'; = co(xi ,i E I 2), I 1 u I 2 = .3 and it is not necessarily I 1 u I 2 = 0. 

In its original form a projection method [6] is as follows. 

Step I. (initialization of the method). Divide the set X into two subsets 1';0 and 

vo . d . h h . . ( i k ) ; o II o 112 h o . h 1 2 m accor ance wit t e cntenon ljl x ,p = x p - p w ere p IS t e vector 

constructed as a convex combination of points ofthe set X. Then 

1';0 ={xi E X,ljl(xi,pk) ~ 0}, J-;0 ={xi E X,ljl(x;,pk) > 0}. 

Further, the k-th iteration ofthe method (k = 0,1,2, ... ) consists of the following 
two steps. 

Step 2. We form two sets I;k = {1';0 ,pk} and 1-;k = {1';0 ,pk} and for each of 

them solve the problem (1): 

llzt 11
2 

= z~mk )lzll2

' liz; r = z~~~k )lzf . 
Step 3. Solve the problem 1!1~~1jjkt + (1- A-)z;jj2 

= 11Pk+!ll
2 

and check the 

condition ofthe completion of the algorithm 

lji(X;' pk) =xi pk+i -IIPk+i r ;;::: 0 for '\/xi EX. (3) 

If condition (3) is not satisfied then steps 2 and 3 are repeated. 

Note that the sets 1';0 and J-;0 do not change by transition from one iteration to 

another. Asymptotic convergence of the algorithm was proved in [3 ], but computational 
experiments have shown very slow rate of convergence of the algorithm and therefore the 
question arose about its acceleration. The key to accelerating the convergence became the 
review of dichotomy of set X at each iteration. It turned out that changing the partition of 
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X significantly affects on the convergence of the algorithm, in particular, guarantees 
finite convergence. This method is called the nested partitions. 
Nested partitions method is as follows. 

Step I. Construct a first approximation- the vector p 0 as a convex combination 

ofpoints in X. 
Step 2. Divide the set X into two subsets r;k and Yzk as follows: 

r;k ={xi EX,1f/(Xi,pk)50}, Yzk ={xi EX,If/(Xi,pk)>O}, 

where lf/(Xi,pk) is defined as lf/(x;,pk)=xipk -llpkr. The index k (k=0,1,2, ... ) 

denotes the serial number of the iteration. 
-k k k -k k . k 

Step 3. Form two sets Y1 = {r; , p } and Y 2 = {Y"z , p } and solve the problem 
(I) for each ofthem: 

llz~k 11

2 

= mi~k llzll
2

' llz;f = mi~k llzll
2 

• 
zeco(Y 1 ) zeco(Y 2) 

Step 4. Solve the problem 

A~~~)lkt + o- /o)z;r = 11Pk+lll
2 

(4) 

and check the condition of the completion of the algorithm: 

lf/(xi,pk) =xipk+l -llpk+lr;::: o for 'ifxi Ex. (5) 

If condition (5) is not satisfied repeat steps 2, 3 and 4 of the algorithm. One 
iteration of nested partitions method includes steps 2, 3 and 4. 

For the method of nested partitions the following theorem is true. 
Theorem. Nested partitions method has finite convergence. 

Proof. Let M c 3 = {1,2, ... ,N} and YM = co(xi,i EM), llzMII
2 

= minllzll
2

, 
zeYAI 

WM = {i :xizM < llzMII
2
}, UM = {i: xizM = llzMf} .It is clear that WM n UM = 0. 

2 . 

Let 8M =min{llzMII -xizM}ifWM *0 and 8M =0 otherwise.IfWM -:f:.O, 
1eWu . 

zM is the solution ofthe projection problem (2). 

It is clear that 8M > 0 for WM * 0 and by virtue of a finite number of M , there 

exists 8M >0 such as 8M ;:::8>0 forM suchas WM :f;0. 

Lemma 1. There exists y > 0 such that _
1
m in lrzll

2 
5 llzM 11

2 
- y for all 

zeco(x ,1eU M vWM) 

M for which WM -:f:. 0 . 

Proof. This follows from elementary estimates. We have 

II~M r = zeco(x'Te~, vWu )lzll
2 

::;; zeco(z~!~ieWM )lzll
2 

• 
(6) 

This follows from the fact that zM E co(x;, i E U M). Let xM be such as 

xM zM -llzMII2 = ?.?:;{xizM -llzMII2} = -8M::;; 8 < 0. 

Then continuing the chain of inequalities (6) we obtain 

, 
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11

-;M 11

2 

~ min llzll2 
= min llzM + A(xM - zM )11

2

• =Eco(z· 1 .xu) A.E[O,I] 

In this task, the minimum is reached when 
XM- ZM r) 

AM = -zM 
2 

= M 
2 

> 0 and its value is 
llxM -zMII llxM -zMII 

liz'" II'- <z~~~::?' ,;llzMII'- "t (llxMII' -llzull')' ,;VII'-"t t>' ,;llzMII'-~ !>' 

where Ll = maxjjzjj = maxjlx;ll· 
ZEX lEN 

When the algorithm the following sets are determined Uk = {i: xizk = llzkf}, 
~ = {i: XiZk < llzklr} and llzk+lll

2 
= J11in llzll

2 
(or i E Zk ::> Uk U ~ ), 

=Eco(x ,IEUk uWk) 

llzkr = x;Ec~W~EU)zll
2 

• 

2 2 5 2 

Apply the lemma 1 for zk+l and zk : 0 < llzk+lll ~ llzk II - r with r ~ 2 !l. It 

follows that after a finite number of steps the condition Wk = 0 will be satisfied. The 

theorem is proved. 

5. Modification ofthe method of nested partitions 

Nested partitions method allows various modifications. The basis for them is the 
following 

Lemma 2. For the method of nested partitions z; = pk is right. 

Proof. For z; the inequality z;x ~ llz;W is right for any x E co(~k ,pk). 

However, by construction, xpk ~ 11Pkll
2 

for any x E co(~k ,pk), and the last inequality 

holds with equality only if x = pk. Due to the fact that z; is a pr9jection of the origin on 

the set co(~k, pk) there exist such A;, e· that 
nk nk 

z; = :LA.;x; +B*pk, LA; +B* =1, A.;,e· ~0, nk c/2 • 

i=l i=l 

Multiplying vector z; with pk we get 

z;pk = tA;xiPk +e*llilf ~ i>l;IIPkli2 +B.IIpkll2 =llpkll2 
~I ~1 
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We have z;pk ~ 1/Pkl/
2 

and z;x ~ 1/z;r for any x E co(Yzk,pk), includingx = pk, i.e. 

z;pk ~ llz;f. 

Add obtained two inequalities for z; pk : IIPk 1r +liz; 11
2 

.::; 2z; pk . Hence 

llpk -z;ll.::; 0 or z; = pk. 

By the lemma 2 and the obvious inequality llz1k 11
2 

.::; liz; r the number of 

calculations in this algorithm can be reduced by using projection z; on co(I;k, pk) from 

h · · · h . . k+ I h (Y:k+l k+l) fi h t t e previOus Iteration as t e proJeCtiOn z2 on t e set co 2 , p or t e nex 

iteration. 
A significant decrease in the number of iterations is possible if to include in the 

set I;k some points of the set Yzk during a successive transition from one iteration to 

another. Inclusion criteria may be different which in turn affects on the total number of 

iterations. In particular, it is proposed to include in the set y;k half points from the set 

Y2k having the lowest projection on the vector pk . 

6. Numerical experiment 

For numerical experiments with algorithm initial simplex was randomly 
generated as a set of vectors with components which are independent uniformly 
distributed random variables. To generate a stress tests the scaling was used so that the 
last coordinate of each vector had a scale of measurement in I 000 times smaller than for 
the rest of the coordinates. More precisely, the initial data set was presented in each test 
as a set of m vectors x = (xl' x2 , ••• , xn) of the dimension n, which components are 

computed as 

X; ={I 00(~; - 0.5), i = 1,2, ... , n -1, 

O.l~n' 

where ~i' i = 1,2, ... , n are independent uniformly distributed to [0, I] random variables. 

The algorithm described in this paper has been implemented in the computer 
language Octave [7], freely available matrix-vector calculator, which is very convenient 
for such experiments. 

Below there is a transcript of an experiment for the case of the simplex formed by 
the m = 180 vectors in space n = 40 . The matrix X contains I80 vectors randomly 
generated in 40-dimensional space. The initial value for the generation of ( 40 x I80)
matrix X of initial data is given in the Octave by the command (seed, 3I4I5292). 

The experiment was conducted twice: 
I) for the case of implementation ofthe algorithm of nested partitions method 

without modifications (simple algorithm); 
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2) for the case of inclusion to the set f;k the points of the set Y;k in each iteration 

(modified algorithm). 

Criterion for choosing the points into the modified set ~k is as follows: 

x;pk s//i'//2 
+ t5, where t5 = -1

-(maxx;pk- min x;pk). 
1 0 x' c.Y2k x' eY2k 

The experimental results are presented in the following 

T bl C a e. f h h d f onvergence o t e met o o neste d partitiOns 
Simple Modified 

k lr;kl jr;kl r l~kl jr;kj r 
I I03 77 1.4259e-5 107 73 8.8047e-6 
2 53 127 1.6226e-6 76 104 8.0904e-6 
3 85 95 4.0042e-6 67 113 2.3769e-6 
4 59 121 1.0308e-6 45 135 4.1006e-7 
5 52 128 9.4053e-7 42 138 1.3291e-7 
6 105 75 1.612 I e-5 40 140 1.9523e-15 
7• 54 126 1.1471 e-6 
8 47 133 3.9930e-7 
9 45 135 2.8230e-7 
10 42 138 8.4993e-8 
I 1 43 137 1.5126e-7 
12 40 140 1.9523e-15 

where k is the number of iteration, sets .Y;k , Y! are the dichotomy of X at the k -th 

iteration, l.r;k I, IYzk I are the powers of the sets .r;k andY! accordingly, 

IIPkr -n;tinxipk 
r = II 0112 X ~X i 0 , P

0 
is the center of gravity of the set X (step 1 of the 

p -mmxp · 
x'eX 

algorithm), pk is the solution of the problem (4) at the k -th iteration. 
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