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Fejer processes are frequently used models for many iterative algorithms in optimization and related areas.
They can be combined with different kinds of decomposition schemes and generate various projection-
type methods suitable for parallel computations. This paper reviews some recent results on Fejer processes
with diminishing disturbances and suggests a new adaptive parameter-free stepsize control rule for such
algorithms.
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1. Introduction

This article mainly describes an attempt to speed up practical convergence of iterative methods
for solving optimization and related problems, which can be described as recursive application
of Fejer operators. Such algorithmic models are quite general and commonly used in convex
feasibility problems (CFP) where Fejer operators can be easily constructed [2]. When certain
problem-specific disturbances are added to such processes it is possible to suggest for con-
strained convex nondifferentiable optimization analogues of CFP-algorithms, ample opportunities
for decomposition and parallel computations.

The above mentioned disturbances in the simplest cases are subgradients of the objective func-
tion at corresponding points scaled by stepsizes λk > 0, k = 0, 1, . . . and theoretical convergence
is typically guaranteed if λm → + 0 and

∑m
k λk → ∞ when m → ∞. However, these assump-

tions, in practice, result in slow convergence, and it is of practical as well as theoretical interest
to speed it up with adaptive rules for stepsizes λk . Nondifferentiability of the objective function
in convex optimization excludes, however, the use of steepest-descent-like approaches, and there
are only a few results on the stepsize control in subgradient algorithms which use the subgradient
oracle only, without additional information about objective functions and constraints.

*Email: nurmi@dvo.ru

ISSN 1055-6788 print/ISSN 1029-4937 online
© 2009 Taylor & Francis
DOI: 10.1080/10556780903151490
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
u
r
m
i
n
s
k
i
,
 
E
v
g
e
n
i
]
 
A
t
:
 
1
2
:
5
6
 
2
5
 
A
u
g
u
s
t
 
2
0
0
9



2 E.A. Nurminski

In this paper, the adaptive stepsize control rule that is based on imitation of the optimality
condition is suggested, and its theoretical validation is given. Illustrative numerical experiments
demonstrated practically linear convergence of Fejer algorithms with disturbances under this
stepsize control.

2. Notations and preliminaries

Let R be the real axis and E denote a finite dimensional Euclidian space with the inner product xy
and the norm ‖x‖ = √

xx. The unit ball {x:‖x‖≤ 1} will be denoted as B. For x ∈E and U ⊂ E,
the sum x +U ={x +u:u ∈U}. The convex hull of a family of vectors {ai : i ∈ N } ⊂ E where
N = {1, 2, . . . , N} will be denoted as

co {ai : i ∈ N } =
{

a =
N∑

i=1

λia
i :

N∑
i=1

λi = 1, λi ≥ 0, i ∈ N
}

= {a = Aλ : λ ∈ �},

where � = {λ = (λ1, λ2, . . . , λN) : ∑N
i=1 λi = 1, λi ≥ 0, i ∈ N }—standard simplex, A is the

matrix of column vectors ai, i ∈ N .

Definition 2.1 An operator F:E→E is called Fejer (with respect to a given nonempty set V ) if
for any v ∈V

‖F(x) − v‖ ≤ ‖x − v‖. (1)

It immediately follows from the definition that any v ∈V is a fixed point of F. For the relevant
F, the corresponding set V will be assumed to be closed throughout the paper.

We define Fejer processes by the following recursive relationship:

xk+1 = F(xk), k = 0, 1, . . . (2)

where F( · ) is a Fejer operator and x0 some starting point. The theory of Fejer processes typically
answers the question, under which conditions the sequence (2) converges in this or that sense
to the set V [10]. To ensure this convergence and for the purpose of this article, the following
property that is stronger than Definition 2.1, is necessary.

Definition 2.2 A Fejer operator F is called locally strong Fejer if for any x̄ /∈ V, there exists a
neighbourhood of zero U and α <1 such that ‖F(x)− v‖≤α‖x− v‖ for any v ∈V and x ∈ x̄ + U .

For the purposes of further applications, we consider a modification of Equation (2):

xk+1 = Fk(x
k + zk), k = 0, 1, . . . (3)

where zk is an arbitrary (for a moment) diminishing (zk → 0) disturbance and Fk is selected
from some finite collection F = {φi, i = 1, 2, . . . , M} of locally strong Fejer operators. We are
especially interested in the case when such a collection is associated with representation of V as
the intersection of Vi, i = 1, 2, . . . , M:

V =
M⋂
i=1

Vi,

and each φi is a locally strong Fejer operator for Vi. It can be shown (see [8] for details) that
if for each k operator Fk is one of the φi, where i is such that xk + zk 	∈Vi, then the presence of
diminishing disturbances zk does not prevent convergence of Equation (3) to V.
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Optimization Methods & Software 3

By the special choice of disturbances zs, the sequence {xs} generated by Equation (3) can be
forwarded towards a selected subset of V, which will be denoted as Z ⊂ V . For that, we define
the notion of restricted attractant as set-valued mapping �:E → 2E , which is directed towards Z
at x ∈V. More precisely,

Definition 2.3 Set-valued map �:E→2E is called a locally restricted attractant of Z ⊂ V if
g(z− x)≥ 0 for all x∈V \Z, g∈�(x) and z∈Z.

In fact, as with Fejer operators, we need a stronger definition:

Definition 2.4 A locally restricted attractant � is called a strong locally restricted attractant
(of Z), if for each x′ ∈V \Z there exists a neighbourhood of zero U such that,

g(z − x) ≥ δ > 0,

for all z∈Z, x∈ x′ +U, g∈�(x) and some δ > 0.

When using a special form of disturbances given by attractants, convergence results for Fejer
processes can be strengthened.

Theorem 2.5 [8] Let F = {φi, i = 1, 2, . . . , M} be a finite family of continuous and locally
strong Fejer operators with respect to corresponding Vi and for any x /∈ V = ∩M

i=1Vi there exists
ι∈ {1, 2, . . . , M} such that φι is locally strong at x and D( · ) is a strong locally restricted attractant
of Z ⊂ V . Then the combined process

xk+1 = Fk(x
k + λkd

k), dk ∈ D(xk), Fk = φιk , where ιk is such that xk + λkd
k /∈ Vik , (4)

if bounded, converges to the set Z if λk → +0, and
∑

λk = ∞.

The immediate application of this approach is to justify the use of sequential or parallel
projection in the subgradient projection algorithm

xk+1 = Fk(x
k − λkg

k), k = 0, 1, . . . , (5)

when a feasible set X of a convex optimization problem minx∈X f (x) is possible to represent as
an intersection of ‘simpler’ sets X = ∩M

i=1Vi . In Equation (5), Fk( · ) is the projection operator
on a set Vik from the family of Vi, i = 1, 2, . . . , M such that xk −λkgk 	∈Vik , and gk ∈ ∂f (xk) is
a subgradient of f at xk . According the Theorem 2.5, there are many possible choices for the
selection of Vik ; the round-robin is probably the simplest possible strategy, but picking up the
most violated, in some sense, constraint is also possible. It is easy to show that projection on any
Vi is a locally strong Fejer operator with respect to Vi, and therefore the Theorem 2.5 guarantees
the convergence of such methods (see again [8] for details).

Theorem 2.5 opens many new possibilities for new algorithms of constrained convex optimiza-
tion, however, the diverging series condition for stepsize λk used in the Theorem 2.5 is known to
result in slow convergence. Therefore, it is of theoretical as well as practical interest to search for
other stepsize control rules with established convergence and better computational performance.
In this paper, the adaptive stepsize rule for Equation (4) is suggested and its theoretical con-
vergence is established. Numerical experiments demonstrated quite satisfactory computational
performance of this method.

To study the convergence of proposed algorithms, we use convergence conditions that proved
to be rather convenient for the analysis of iterative algorithms, especially in the field of nondif-
ferentiable optimization [6]. From the point of view of these conditions, an algorithm is a rule for
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4 E.A. Nurminski

constructing an infinite sequence of points {xk} that should converge to some target set X	. This
target set may be a solution set of a given optimization or feasibility problem, fixed points of a
given operator, set of points satisfying necessary optimality conditions and the like.

Convergence for a certain subsequence of {xk} ⊂ E is guaranteed if the following conditions
are fulfilled:

A1 Sequence {xk} is bounded.
A2 There is a continuous function W(x) : E → R such that if {xk} has a limit point x′ 	∈X	, then

it has another limit point x ′′ such that W(x ′′) < W(x ′).

It is easy to show that under these conditions the sequence {xk} has a limit point x	 ∈X	. Indeed,
denote a set of limit points of the sequence {xk} as X̄. It is a closed bounded set and because of
continuity of W the set W̄ = {W(x) : x ∈ X̄} is closed and bounded as well. Let w	 = {min w :
w ∈ W̄ } and {xkt } be the corresponding subsequence such that limt→∞ W(xkt ) = w	. Without loss
of generality, one can assume that there is a limit limt→∞ xkt = x	. Obviously x	 ∈X	, otherwise
according to condition A2 there is another limit point x̄	 with W(x̄	) < W(x	) = w	, which
contradicts the definition of w	.

Conditions A1 and A2 are insufficient, however, to prove that all limit points of {xk} belong to
X	. It is possible to ensure the latter if more stringent monotonicity of the sequence {W (xk)} and
specific features of the set W 	 ={W (x): x ∈X	} are requested. The resulting conditions may look
like the following:

B1 Sequence {xk} is bounded.
B2 For {xkt }→ x′ when t → ∞ with x′ 	∈X	, there exists ε > 0 such that for any t

mt = inf{m : ‖xkt − xm‖ > ε} < ∞. (6)

B3 There is a continuous function W(x) : E → R such that

lim sup
t→∞

W(xmt ) < lim
t→∞ W(xkt ) = W(x ′) (7)

for any subsequences {xkt }, {xmt } satisfying B2.
B4 The set W 	 ={W (x	), x	 ∈X	} is such that R \ W	 is everywhere dense.
B5 If {xkt }→ x	 ∈X	, then ‖xkt+1 − xkt ‖→ 0 when t → ∞.

Conditions B2 and B3 imply A2 so it follows from the above that {xk} has at least one limit
point in X	. To prove that there are no limit points out of X	, it is easy to come to a contradiction.

Indeed, if there is a limit point x′ 	∈X	, then according to B2 and B3 there is a second limit
point x ′′ such that ‖x ′′ − x ′‖ ≥ ε and W(x ′′) < W(x ′). According to B4, it is possible to select
subinterval [a, b] ⊂ (W(x ′′), W(x ′)) such that a 	∈W 	. As {W (xk)} infinitely often crosses [a, b],
it is possible to select from {xk} subsequences {xpt }, {xqt } such that pt < qt , W (xpt ) ≤a, W (xs) ≥a
for pk < s ≤qt and W (xqt ) ≥ (a +b)/2. Figure 1 may clarify the role of the relevant subsequences.

Without loss of generality, it can be assumed that xpt → x̄ ′. It is clear that x̄ ′ /∈ X	 otherwise
from W (xpt ) ≤a <W (xpt+1) and ‖xpt+1 − xpt ‖→ 0 it follows that W(xpt ) → a = W(x̄ ′) and x̄ ′
cannot belong to X	 due to the special choice of a.

Define as in Equation (6)

rt = inf{r : ‖xpt − xr‖ > ε} < ∞,

where ε is sufficiently small that |W(x̄ ′) − W(x)| ≤ (b − a)/4 for all ‖x̄ ′ − x‖ < 4ε. For t large
enough ‖xpt − x̄ ′‖ ≤ ε and

‖xs − x̄ ′‖ = ‖xpt − x̄ ′ − xpt + xs‖ ≤ ‖xpt − x̄ ′‖ + ‖xpt − xs‖ ≤ 2ε,
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Optimization Methods & Software 5

Figure 1. Subsequences involved: xkt → x′ /∈ X	, ‖xmt − xkt ‖ > ε, lim supt→∞ W(xmt ) ≤ a < b ≤ limt→∞ W(xkt ),
xpt → x̄′ /∈ X	, ‖xpt − xrt ‖ > ε,lim supt→∞ W(xrt ) ≥ limt→∞ W(xpt ) = W(x̄′).

for all pt < s < rt and consequently |W(xs) − W(x̄ ′)| ≤ (b − a)/4. Hence W(xs) ≤ W(x̄ ′) +
(b − a)/4 < a + (b − a)/2 = (a + b)/2 ≤ W(xqt ) for s such that pt ≤ s < rt , and therefore
rt ≤qt . By construction, W (xs) ≥ a for pt < s ≤ qt and hence W (xrt ) ≥a and

lim sup
t→∞

W(xrt ) ≥ a ≥ W(x̄ ′),

which contradicts B3. This contradiction proves that all limit points of the sequence {xk} belong
to X	.

The ideas of this approach can be traced down to Lyapunov conditions for continuous-time
dynamical systems with Equation (7) being the analogue of the negative sign of full derivative of
a Lyapunov function along the trajectory of system, described by ordinary differential equations.
For this reason, we will sometimes call W ( · ) a Lyapunov function of the process {xk}.

The advantage of using conditions B1–B5 consists of separating local analysis of the limit
behaviour of an algorithm in a vicinity of ‘non-optimal’ point (B2, B3) from checking out global
conditions (B1, B4, B5). Global conditions depend essentially on properties of a Lyapunov func-
tion W and even as no definite recipes for constructing such functions exist, the objective function
itself and the distance to the optimum are typical choices. Weak monotonicity required by B3
makes it easier to prove even in the cases when algorithms are nonmonotone, as we see in the
examples.

The development of conditions A1 and A2 and B1–B5 were inspired by the pioneering work of
Zangwill [11], but they were especially tailored to deal with nonmonotone algorithms of nondif-
ferentiable optimization. Among related work the ‘gradient related’ algorithms of Bertsekas [5]
also bear some relation to B3 and B4 with W (x) = f (x), but as the name suggests, it requires
differentiability of the objective function.

3. Envelope stepsize control

As numerical experiments and theoretical analysis show, the diverging sum series stepsize rule
used in the Theorem 2.5 and in many theoretical studies of subgradient-like algorithms of non-
differentiable optimization as well results in slow convergence. Here, we present a simple and
rather general idea for stepsize control in methods, based on Fejer processes with attractants. For
simplicity, we consider the iterative process

xk+1 = xk − λkd
k, dk ∈ D(xk), (8)
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6 E.A. Nurminski

where D(x) is a set-valued attractant whose properties will be specified later. To simplify notations
let D(p, q) = co {dp, dp+1, . . . , dq}.

For a given sequence θm → + 0, m = 0, 1, . . . determine corresponding sequences of indices
{km} and numbers {λk} by the following recursive relationships:

• Set k0 = 0 and pick up initial λ0 > 0. Let q ∈ (0, 1).
• For given m and km, determine km+1 as the index that satisfies conditions

0 /∈ D(km, k) + θmB, km ≤ k < km+1, 0 ∈ D(km, km+1) + θmB (9)

with λk =λkm for km ≤ k < km+1. Set

λkm+1 = qλkm
. (10)

In other words, condition (9) detects the first instance when {xk} seems to start cycling, λk

is kept constant between km and km+1 and, according to Equation (10), at k = km+1 stepsize is
diminished by factor q. This idea, that is to keep stepsize constant while we seem to be moving
in a certain direction and decrease it otherwise, is by no means new and can be traced back as far
as Armijo [1]. Recently, as a certain heuristic to improve a current approximate solution, it was
propagated in [3] with successful applications in image processing in tomography.

3.1 Convergence

The following theorem establishes convergence of the process (8) with the stepsize rules (9) and
(10). Denote X	 ={x	:0 ∈D(x	)}. The following theorem holds.

Theorem 3.1 Let D(x) be a convex-valued, locally bounded upper-semi-continuous set-valued
locally strong attractant of X	. Then if the sequence {xk} generated by Equation (8) is bounded
then all its limit points belong to X	.

Proof Note that ks such that dk = 0 can be deleted from Equation (8) and dk = 0 for all k represent
the trivial case. So assume that dk 	= 0 for all k. Next, we establish that the sequence {km}, defined
by Equation (9) is infinite, or, in other words, λk is decreased in accordance with Equation (10)
infinitely many times.

Indeed, if λk is decreased only a finite number of times, then there is M such that for all k > kM

0 /∈ D(kM + 1, k) + 2δMB = Dk + 2δMB

for some δM > 0. By monotonicity, Dk with respect to inclusion there is a Kuratowski limit (see [4]
for the definition) limk→∞ Dk = D̃ with 0 /∈ Ḡ + δMB, where D̄ is the closure of D̃. Sets D̃ and
D̄ are of course convex, and therefore there exists v ∈ D̄ such that

vd̄ ≥ ‖v‖2,

for all d̄ ∈ D̄ + δMB. By representing d̄ as d + δMz, d ∈ D̄, z ∈ B, obtain

vd ≥ ‖v‖2 − δMvz,

for all z ∈U. After taking supremum of the right-hand side with respect to z ∈B obtain

vd ≥ ‖v‖2 + δM‖v‖ > δM‖v‖ > 0
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Optimization Methods & Software 7

or

v̄d > δM, (11)

where v̄ = v/‖v‖. As D̄ ⊃ Dk for all k ≥ kM the inequality (11) holds for all dk , k > kM , and
hence

‖xkM − xK‖ ≥ (xkM − xK)v̄ =
K−1∑
k=kM

λMdkv̄ ≥ λM(K − 1 − kM)δM −→ ∞

when K → ∞, which contradicts the boundness of {xk}. It proves that λk → 0 and also
‖xk+1 − xk‖→ 0 and hence B4 is fulfilled.

In what follows, we show that B2 is fulfilled as well. Assume that {xnk } is a certain subsequence,
which converges to x′ 	∈X	. Then 0 	∈D(x′), and by upper-semicontinuity of D( · ) there exists
ε, δ > 0 such that

0 /∈ co {D(x) : ‖x ′ − x‖ ≤ 4ε} + δB. (12)

Consider nk large enough that ‖xnm − x′‖≤ ε for m ≥ k. Without loss of generality, we can assume
that the corresponding 2θm <δ. Then if {xl} remains in the 4ε-neighbourhood of x′ for l > nk ,
then not more than one change in the value of λk can occur. In other words, among indices l such
that l ≥nk and ‖xl − x′‖≤ 4ε there is not more than one l ∈ {km}. In fact, if there were two such
indices km′ and km′+1 it would contradict Equation (12):

0 ∈ D(km′ , km′+1) ⊂ co {D(x) : ‖x ′ − x‖ ≤ 4ε} + δB.

Therefore the assumption that {xl:l ≥ nk} ∈ {x:‖x − x′‖≤ 4ε} contradicts the infiniteness of {km}
and hence for all k there exist mk ≥ nk such that

‖xmk − xnk‖ > ε, ‖xl − xnk‖ ≤ ε for all l such that nk ≤ l < mk.

Finally, we show that B3 is fulfilled as well. Assume as above that the sequence {xk} has a
subsequence {xnk }→ x′ 	∈X	. Then, according to B2 for any ε > 0 small enough there exists {xmk }
such that for all k

‖xnk − xs‖ ≤ ε, nk < s ≤ mk, ‖xmk − xnk‖ > ε.

Estimate W(xmk ) = minx	∈X	
‖xmk − x	‖2 from above as follows:

W(xmk ) ≤ ‖xmk − x	‖2 = ‖xmk − xnk + xnk − x	‖2

= ‖xnk − x	‖2 + 2(xnk − x	)(xmk − xnk ) + ‖xmk − xnk‖2

≤ ‖xnk − x	‖2 + 2(xnk − x	)(xmk − xnk ) + ε2

for any x	 ∈X	. Taking into account that

xmk − xnk =
mk−1∑
s=nk

(xs+1 − xs) =
mk−1∑
s=nk

λsd
s,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
u
r
m
i
n
s
k
i
,
 
E
v
g
e
n
i
]
 
A
t
:
 
1
2
:
5
6
 
2
5
 
A
u
g
u
s
t
 
2
0
0
9



8 E.A. Nurminski

obtain

W(xmk ) ≤ ‖xnk − x	‖2 + 2
mk−1∑
s=nk

λs(x
nk − x	)ds + ε2 = ‖xnk − x	‖2

+ 2
mk−1∑
s=nk

λs(x
nk − xs + xs − x	)ds + ε2 ≤ ‖xnk − x	‖2 + 2

mk−1∑
s=nk

λs(x
s − x	)ds

+ 2
mk−1∑
s=nk

λs‖xnk − xs‖‖ds‖ + ε2 ≤ ‖xnk − x	‖2 + 2
mk−1∑
s=nk

(xs − x	)λsd
s

+ 2εC

mk−1∑
s=nk

λs + ε2,

where C is some constant large enough. As D( · ) is an attractant (xs − x	)ds ≤ −γ for some γ > 0
and hence

W(xmk ) ≤ ‖xnk − x	‖2 − 2γ

mk−1∑
s=nk

λs + 2εC

mk−1∑
s=nk

λs + ε2.

Assuming ε < 2γ /C, the last inequality can be strengthened to

W(xmk ) ≤ ‖xnk − x	‖2 − γ

mk−1∑
s=nk

λs + ε2. (13)

The sum
∑mk−1

s=nk
λs can be estimated from below

ε < ‖xmk − xnk‖ ≤
mk−1∑
s=nk

λs‖ds‖ ≤ 1

2
C

mk−1∑
s=nk

λs

and after substituting that in Equation (13) obtain

W(xmk ) ≤ ‖xnk − x	‖2 − 2γ ε

C
+ ε2 ≤ ‖xnk − x	‖2 − γ ε

C

for arbitrary x	 ∈V. Computing the infinum of the right-hand side with respect to x	 ∈X	 yields:

W(xmk ) ≤ W(xnk ) − γ ε

C
.

Passing to the limit when k → ∞ results in

lim sup
k→∞

W(xmk ) ≤ lim
k→∞ W(xnk ) − γ ε

C
= W(x ′) − γ ε

C
< W(x ′),

which proves B3 and hence completes the proof of the theorem. �

A few words about computational issues related to the practical use of envelope stepsize control
(ESC). To apply this stepsize rule we need to perform repetitive checks of inclusion

0 ∈ D(km, k) + δmB, k = km + 1, km + 2, . . . . (14)

A natural way to check Equation (14) is to solve the least norm problem for the set D(km, k) and
compare its result with δm. This is a nontrivial problem, however, the algorithm [7] demonstrated
in our tests quite adequate performance. Much can also be gained from the incremental growth
of the set D(km, k), when the least norm solution on the previous iteration can be used as a good
starting point for the next, which can be easily incorporated in the algorithm [7].
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Optimization Methods & Software 9

3.2 Illustrative examples

It is useful to consider even tiny illustrative examples of the use of ESC, and here we consider two
of them: unconditional convex optimization and nonlinearly constrained. Despite their different
natures ESC demonstrated in both cases similar computational behaviour and outperformed the
previously suggested [9].

3.2.1 Unconstrained convex optimization

Let us apply the subgradient method for minimization of the piece-wise linear function

f (x) = max{yi, i = 1, 2, 3}, (y1, y2, y3) = y = Ax (15)

of 2-dimensional vector x = (x1, x2) defined by the matrix

A =
∣∣∣∣∣∣

1 0
−0.5 −0.4
−3 0.2

∣∣∣∣∣∣.
The origin x	 = (0, 0) with f (x	) = 0 is a trivial solution of this problem. The algorithm

xk+1 = xk − λkg
kgk ∈ ∂f (xk), k = 0, 1, . . . (16)

was started from the initial point x0 = (5, 7) with rather large initial stepsize λ0 =‖x0‖= 8.6.
The subgradient algorithm (16) can be considered as a very special case of a Fejer process with
diminishing disturbances (4) when Fk is just an identity operator, V =E, Z ={x	:0 ∈ ∂f (x	)} and
the attractant mapping D( · ) is the subdifferential of the objective function (15).

The results of application of ESC are shown in Figure 2. We can clearly observe the linear rate of
convergence with some perturbations, and it is clear also that the algorithm is not monotone either
in terms of the objective function or in terms of the Euclidian distance to the optimal point, which
is a traditional performance indicator of convex optimization. Therefore the proof of convergence
for such algorithms can be obtained only by nontraditional argument-like conditions B1–B5 and
also the very notion of the rate of convergence should be modified to cover such cases.

It may be worth noting that the ESC stepsize rule does not make any assumptions about the
structure of the objective function and is strictly ‘subgradient oracle-based’. There are not so many
stepsize recommendations for such a case and it is interesting to compare these computational

Figure 2. Subgradient algorithm with ESC. Stepsize multiplier 0.5. Objective function (left) and distance to the optimum
(right).
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10 E.A. Nurminski

results with theoretical estimates [9] for another stepsize rule that guarantees a linear rate of
convergence. In this work, the subgradient method with normalized subgradient

xk+1 = xk − hkg
k

‖gk‖ , k = 0, 1, . . . , gk ∈ ∂f (xk)

is considered and the use of hk+1 = sin(φ)hk = qf hk, h0 ≥ ‖x0 − x	‖co s(φ) is proposed. The
angle φ is determined from the condition that for any x 	= x	 and g∈ ∂f (x) the following inequality
holds

g(x − x	) ≥ cos (φ)‖g‖‖x − x	‖ (17)

with φ ∈ [π /4, π /2). For the function (15), the maximal angle φ is determined by the subdifferential
of this function on the line y1 = y3, which is equal to the convex hull of the first and the third rows of
A. By direct computation for Equation (17), obtain cos (φ) = 0.016609, which gives qf = 0.99986.
After the same 500 iterations the initial stepsize will be decreased to only 0.93335h0, which
in fact means that no practical convergence occurs.

3.2.2 Quadratically constrained convex optimization

Another example is given by the convex optimization problem with quadratic constraints

min f (x) = min max
i=1,2,3

3∑
j=1

aij xj

‖x − e1‖2 − 4 = h1(x) ≤ 0, (18)

‖x − e2‖2 − 4 = h2(x) ≤ 0,

where vectors e1 = (1, 0, 0), e2 = ( − 1, 0, 0), and the matrix A=‖aij‖ has the following entries:

A =
∣∣∣∣∣∣
−1 −1 2

2 1 3
1 4 1

∣∣∣∣∣∣ .
The feasible set X in this problem is the intersection of two balls

X = B1 ∩ B2, B1 = {x : h1(x) ≤ 0}, B2 = {x : h2(x) ≤ 0}
and the projection on any of them presents no difficulty. To make use of this we apply for solution
of Equation (18) the Fejer process

xk+1 = Fk(x
k − λkg

k), k = 0, 1, . . . , x0 = (1, 2, 3) (19)

with the attractant gk ∈ ∂f (xk) is the subgradient of f, computed at xk . The Fejer operator Fk is
constructed with the help of projection operators �i defined as

‖�i(z) − z‖ = min
x∈Bi

‖x − z‖, i = 1, 2;

and

Fk(x
k − λkg

k) = �ιk (x
k − λkg

k),

where ιk is such that

hιk (x
k − λkg

k) = max{h1(x
k − λkg

k), h2(x
k − λkg

k)} > 0.

If max{h1(x
k − λkg

k), h2(x
k − λkg

k)} ≤ 0 then Fk is identity.
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In other words, the shifted point xk −λkgk is projected on the most violated constraint. In fact
it does not matter too much, projection on any violated constraint will result in convergence of
the algorithm, possibly slower.

To cast Equation (19) into the form of Equation (8) one has to set dk = (Fk(xk − λkg
k) −

xk)/λk = (x̄k − xk)/λk . The boundness of {xk} already guarantees that λk → 0 which, according
to Theorem 3.1, establishes convergence of {xk} to the feasible set X. It can be shown furthermore
that for X with nonempty interior, which is the case, dk ∈ (co(∂f (xk)) + F+

k ) ∩ γB = D(xk)

where F+
k is a positive cone for the cone of feasible directions at xk and γ is large enough. Then

0 ∈D(x	), x	 ∈X corresponds to the optimality conditions of problem (18).
In Figure 3, convergence of objective function values towards the optimal value

− 3.05714794 and solutions themselves towards optimal point x	 = (0, − 0.339683151044523,
− 1.698415543040009) are shown. Again as for the unconstrained optimization problem con-
sidered earlier, we observe the linear rate of convergence on the average with marked
nonmonotonicity both in terms of objective function and distance to the optimum.

It is interesting to see the dynamics of the stepsize for this problem shown in Figure 4. It can
be seen that the stepsize decreases in a more or less regular way, which accounts for the linear

Figure 3. Convergence of the objective function and the distance to the optimum.

Figure 4. Constraints violation and stepsize.
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12 E.A. Nurminski

rate of convergence. Curiously enough, the dynamics of maximal constraint violation also shown
in this figure closely parallels the stepsize, however, small deviations from monotonicity can be
observed here as well.

4. Conclusions

In general, it can be concluded that a combination of Fejer processes and problem-specific attract-
ing mappings can be used to suggest new algorithms with new opportunities for decomposition and
parallel computations. For these algorithms it is possible to use parameter-free adaptive envelope
stepsize control for which numerical experiments demonstrated a nonmonotone but close-to-linear
rate of convergence.
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