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Abstract
This chapter is devoted to the black-box subgradient algorithms with the min-

imal requirements for the storage of auxiliary results, which are necessary to ex-
ecute these algorithms. It starts with the original result of N.Z. Shor which open
this field with the application to the classical transportation problem. To discuss
the fundamentals of non-smooth optimization the theoretical complexity bounds for
smooth and non-smooth convex and quasi-convex optimization problems are briefly
exposed with the special attention given to adaptive step-size policy. Than this chap-
ter contains descriptions of different modern techniques that allow to solve non-
smooth convex optimization problems faster then lower complexity bounds: Net-
serov smoothing technique, Netserov Universal approach, Legendre (saddle point)
representation approach. The new results on Universal Mirror Prox algorithms rep-
resent the original parts of the survey. To demonstrate application of non-smooth
convex optimization algorithms for solution of huge-scale extremal problems we
consider convex optimization problems with non-smooth functional constraints and
propose two adaptive Mirror Descent methods. The first method is of primal-dual

Pavel E. Dvurechensky
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, 10117, Ger-
many and Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, build.1,
Moscow, 127051, Russia e-mail: pavel.dvurechensky@wias-berlin.de

Alexander V. Gasnikov
Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region,
141701, Russia e-mail: gasnikov@yandex.ru

Evgeni A. Nurminski
Far Eastern Federal University, Russky ostrov, Vladivostok, 690000, Russia e-mail:
nurminskiy.ea@dvfu.ru

Fedor S. Stonyakin
V.I. Vernadsky Crimean Federal University, 4 V. Vernadsky Ave, Simferopol, 295007 and Moscow
Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701
e-mail: fedyor@mail.ru

1



2 P.E. Dvurechensky, A.V. Gasnikov, E.A. Nurminski and Fedor S. Stonyakin

variety and proved to be optimal in terms of lower oracle bounds for the class of
Lipschitz-continuous convex objective and constraints. The advantages of applica-
tion of this method to sparse Truss Topology Design problem are discussed in some
details. The second method can be applied for solution of convex and quasi-convex
optimization problems and is optimal in a sense of complexity bounds. The con-
clusion part of the survey contains the important references that characterize recent
developments of non-smooth convex optimization.
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1 Introduction

We consider a finite-dimensional nondifferentiable convex optimization problem
(COP)

min
x∈E

f (x) = f? = f (x?),x? ∈ X? , (1)

where E denotes a finite-dimensional space of primal variables and f : E → R is a
finite convex function, not necessarily differentiable. For a given point x the subgra-
dient oracul returns value of objective function at that point f (x) and subgradient
g ∈ ∂ f (x). We do not make any assumption about the choice of g from ∂ f (x). As
we are interested in computational issues related to solving (1) mainly we assume
that this problem is solvable and has nonempty and bounded set of solutions X?.

This problem enjoys a considerable popularity due to its important theoretical
properties and numerous applications in large-scale structured optimization, dis-
crete optimization, exact penalization in constrained optimization, and others. Non-
smooth optimization theory made it possible to solve in an efficient way classical
descrete min-max problems [23], l1-approximation and others, at the same time
opening new approaches in bi-level, monotropic programming, two-stage stochas-
tic optimization, to name a few.

As a major steps in :the development of different algorithmic ideas we can start
with the subgradient algorithm due to Shor (see [71] for the overview and references
to earliest works).

2 Example Application: Transportation Problem

From utilitarian point of view the development of non-smooth (convex) optimization
started with the classical transportation problem

min ∑
m
i=1 ∑

n
j=1 ci jxi j

∑
m
i=1 xi j = a j, j = 1,2, . . . ,n;

∑
n
j=1 xi j = bi, i = 1,2, . . . ,m

xi j ≥ 0, i = 1,2, . . . ,m; j = 1,2, . . . ,n

(2)

which is widely used in many applications.
By dualizing this problem with respect to balancing constrains we can convert

(2) into dual problem of the kind

max Φ(u,v) (3)

where u = (ui, i = 1,2, . . . ,m);v = (v j, j = 1,2, . . . ,n) are dual variables associated
with the balancing constraints in (2) and Φ(u,v) is the dual function defined as

Φ(u,v) = inf
x≥0

L(x,u,v) (4)
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and L(x,u,v) is the Lagrange function of the problem:

L(x,u,v) =
m

∑
i=1

n

∑
j=1

ci jxi j +
n

∑
j=1

u j(
m

∑
i=1

xi j−a j)+
m

∑
i=1

vi(
n

∑
j=1

xi j−bi).

By rearranging terms in this expression we can obtain the following expression for
the dual function

Φ(u,v) =−m∑
n
j=1 u ja j−n∑

m
i=1 vibi +∑

m
i=1 ∑

n
j=1 infx≥0 xi j{ci j +u j + vi}=

−m∑
n
j=1 u ja j−n∑

m
i=1 vibi− IndD(u,v),

(5)

where

IndD(u,v) =
{

0 when ci j +ui + v j ≥ 0;
∞ otherwise. (6)

is the indicator function of the set D = {u,v : ci j + u j + vi ≥ 0, i = 1,2, . . . ,m; j =
1,2, . . . ,n} which is the feasible set of the dual problem.

Of course, by explicitely writing feasibility constraints for (3) we obtain the lin-
ear dual transportation problem with a fewer variables but with much higher number
of constraints. This is bad news for textbook simplex method so many specialized
algorithms were developed, one of them was simple-minded method of generalized
gradient which started the development of non-smooth optimization.

This method relies on subgradient of concave function Φ(u,v) which we can
transform into convex just by changing signs and replacing inf with sup

Φ(u,v) = m∑
n
j=1 u ja j +n∑

m
i=1 vibi +

∑
m
i=1 ∑

n
j=1 supx≥0 xi j{ci j +u j + vi}=

= m∑
n
j=1 u ja j +n∑

m
i=1 vibi + IndD(u,v),

and ask for its minimization.
According to convex analysis [65] the subdifferential ∂cΦ(u,v) exists for any

v,u ∈ intdom(IndD), and in this case just equals to the (constant) vector gL =
(gu,gv) = (a,b) of a linear objective in the interior of D. The situation becomes
more complicated when u,bv happens to be at the boundary of D, the subdiffer-
ential set ceases to be a singleton and becomes even unbounded, roughly speaking
certain linear manifolds are added to gL but we will not go into details here. The
difficulty is that if we mimic gradient method of the kind

uk+1 = uk−λgu
L = uk−λa;vk+1 = vk−λgv

L = vk−λb;k = 0,1, . . . (7)

with a certain step-size λ > 0, we inevitably violate the dual feasibility constraints
as a,b > 0. Than the dual function (7) becomes undefined and correspondently the
subdifferential set becomes undefined as well.

There are at least two simple ways to overcome this difficulty. One is to incor-
porate in the gradient method certain operations which restore feasibility and the
appropriate candidate for it is the orthogonal projection operation where one can
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make use of the special structure of constraints and sparsity. However it will still
require computing projection operator of the kind BT (BBT )−1B for basis matri-
ces B with rather uncertain number of iteration and of matrices of the size around
(n+m)×(n+m). Neither computers speed nor memory sizes at that time where not
up to demands to solve problems of n+m≈ 104 which was required by GOSPLAN
!

The second ingenious way was to take into account that if ∑
n
j=1 a j = ∑

m
i=1 bi =V ,

which is required anyway for solvability of transportation problem in a closed form.
The flow variables may be uniformally bounded by V and the dual function can be
redefined as

ΦV (u,v) = m∑
n
j=1 u ja j +n∑

m
i=1 vibi−

∑
m
i=1 ∑

n
j=1 max0≤x≤V xi j{ci j +u j + vi}=

= m∑
n
j=1 u ja j +n∑

m
i=1 vibi +PV (u,v)

where the penalty function PV (u,v) is easily computed by component-wise maxi-
mization:

PV (u,v) = ∑
m
i=1 ∑

n
j=1 maxxi j∈[0,V ] xi j{ci j +u j + vi}=

∑
m
i=1 ∑

n
j=1 V{ci j +u j + vi}+

where {·}+ = max{0, ·}. Than the dual objective function becomes finite, the opti-
mization problem — unconstrained and we can use simple subgradient method with
very low requirements for memory and computations.

Actually even tighter bounds xi j ≤ min(ai,b j) can be imposed on the flow vari-
ables which may be advantageous for computational reasons.

In both cases there is a fundamental problem of recovering optimal primal n×m
primal solution from n+m dual. This problem was studied by many authors and
recent advances in this area can be studied from the excellent paper by A. Nedic and
A. Ozdoglar [47]. Theoretically speaking, nonzero positive values of ci j + u?j + v?i ,
where u?,v? are the exact optimal solutions of the dual problem (3) signal that
the corresponding optimal primal flow x?i j is equal to zero. Hopefully after exclud-
ing these variables we obtain nondegenerate basis and can compute the remaining
variables by simple and efficient linear algebra, especially taking into account the
uni-modularity of basis.

However the theoretical gap between zeros and non-zeros is exponentially small
even for modest length integer data therefore we need an accuracy unattainable by
modern 64-128 bits hardware. Also the real life computations are always accompa-
nied by numerical noise and we face the hard choice in fact guessing which dual
constraints are active and which are not.

To connect the transportation problem with non-smooth optimization notice that
the penalty function PV (u,v) is finite with the subdifferential ∂cPV (u,v) which can
be represented as a set of n×m matrices
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gi j =

V if ci j +u j + vi > 0
0 if ci j +u j + vi < 0
cone(0,V ) if ci j +u j + vi = 0

so the subdifferential set is a convex hull of up to 2(n+m) extreme points — enormous
number even for a modest size transportation problem. Nevertheless it is easy to
get at least single member of subdifferential and consider the simplest version of
subgradient method:

xk+1 = xk−λ ḡk,k = 0,1, . . .

where x0 is a given starting point, λ > 0 — fixed step-size and ḡk = gk/‖gk‖ is a
normalized subgradient gk ∈ ∂ f (xk). Of course we assume that gk 6= 0 otherwise xk

is already a solution.
Of course, there is no hope of classical convergence result such that xk→ x? ∈X?,

but the remarkable theorem of Shor [68] establishes that this simplest algorithm
determines at least the approximate solution.

3 The First Subgradient Algorithm

As a major step in the development of different algorithmic ideas we can start with
the subgradient algorithm due to Shor (see [71] for the overview and references to
earliest works). Of course, there is no hope of classical convergence result such that
xk → x? ∈ X?, but the remarkable theorem of Shor [68] establishes that this very
simple algorithm provides an approximate solution of (1) at least theoretically.

Theorem 1. Let f is a finite convex function with a subdifferential ∂ f and the se-
quence {xk} is obtained by the recursive rule

xk+1 = xk−λgk
ν ,k = 0,1, . . . (8)

with λ > 0 and gk
ν = gk/‖gk‖,gk ∈ ∂ f (xk), gk 6= 0 is a normalized subgradient at

the point xk. Then for any ε > 0 there is an infinite set Zε ⊂ Z such that for any
k ∈ Zε

f (x̃k) = f (xk) and dist(x̃k,X?)≤ λ (1+ ε)/2.

The statement of the theorem is illustrated on Fig. 1 together with the idea of the
proof. The detailed proof of the theorem goes like following: Let x? ∈ X? and esti-
mate

‖xk+1−x?‖2 = ‖xk−x?−λgk
ν‖2 = ‖xk−x?‖2 +λ

2−2λ ḡk(xk−x?).

The last term in fact equals

min
z ∈ Hk

‖x?− z‖2 = ‖x?− zk‖2 = δk,
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ḡk

xk{x
: f

(x)
=
f(
x
k )}

x?

δk

µk
x̃k

Fig. 1 The statement and the idea of the proof of Shor’s theorem

where Hk = {z : zgk
ν = xkgk

ν is a hyperplane, orthogonal to gk
ν and passing through

the point xk, so

‖xk+1−x?‖2 = ‖xk−x?‖2 +λ
2−2λδk, k = 0,1,2, . . . (9)

If λ 2−2λδk ≤−λ 2ε for any k ∈ Z then

‖xk+1−x?‖2 ≤ ‖xk−x?‖2−λ
2
ε, k = 0,1,2, . . . (10)

therefore
0≤ ‖xk+1−x?‖2 ≤ ‖x0−x?‖2 ≤−kλ

2
ε →−∞ (11)

when k→∞. This contradiction proves that there is k0 such that λ 2−2λδk0 >−λ 2ε

or δk0 < λ (1+ ε)/2.
To complete the proof notice that by convexity f (zk0)≥ f (xk0) and therefore

min
z: f (z)= f (xk0 )

‖x?− z‖2 = ‖x?− z̄k0‖2 = min
z: f (z)≥ f (xk0 )

‖x?− z‖2 ≤ ‖x?− zk0‖2 = δk0 .

(12)
By setting x̃0 = zk0 we obtain ‖x?− x̃0‖2 < λ (1+ ε)/2.
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By replacing x0 in (11) by x̃0 and repeating the reasoning above we obtain x̃1

such that ‖x?− x̃1‖2 < λ (1+ ε)/2, then in the same manner x̃2, x̃3 and so on with
‖x?− x̃k‖2 < λ (1+ ε)/2,k = 2,3, . . . which complete the proof.

4 Complexity Results for Convex Optimization

At this section we describe the complexity results for nonsmooth convex opti-
mization problems. Most of the results mentioned below can be found in books
[51, 64, 61, 15, 9]. We start with the case when N ≥ n = dimx, where N is a number
of oracle calls (number of subgradient calculations or/and calculations of separation
hyperplane to some simple set).

Let’s consider convex optimization problem

f (x)→min
x∈Q

, (13)

where Q – is a compact and simple set (it’s significant here!). We’d like to find such
a point xN that

f
(
xN)− f∗ ≤ ε,

where f∗ = f (x∗) is an optimal value of function in (13), x∗ – the solution of (13).
The lower and the upper bounds for the oracle complexity is (up to a multiplier,
depends on Q under logarithm)

N ∼ n ln
(
∆ f
/

ε
)
,

where ∆ f = sup
x,y∈Q

{ f (y)− f (x)}. The center of gravity method [46, 25] converges

according to this estimate. The center of gravity method in n = 1 is a simple binary
search method [12]. But in n > 1 this method is hard to implement. The complexity
of iteration is too high, because we required center of gravity oracle [15]. Wellknown
ellipsoid method [69, 51] requires N = Õ

(
n2 ln

(
∆ f
/

ε
))

oracle calls and O
(
n2
)

it-

eration complexity. Here and below Õ() means O() up to O
(

lnO(1) n
)

-factor (typi-
cally this factor is just O(lnn)). In [76, 15] a special version of cutting plane method
was proposed. This method (Vayda’s method) requires N = Õ

(
n ln
(
∆ f
/

ε
))

ora-
cle calls and has iteration complexity Õ

(
n2.37

)
. In the work [45] there proposed a

method with N = Õ
(
n ln
(
∆ f
/

ε
))

oracle calls and iteration complexity Õ
(
n2
)
. Un-

fortunately, for the moment it’s not obvious that this method is very practical one
due to the large log-factors in Õ().

Based on ellipsoid method in the late 70-th Leonid Khachyan showed [41] that
LP is in P in byte complexity. Assume we have to answer is Ax ≤ b solvable (n =
dimx, m = dimb)? We assume that all elements of A and b are integers. And we’d
like to find one of the exact solutions x∗. This problem up to a logarithmic factor
in complexity is equivalent to the problem to find the exact solution of LP problem
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〈c,x〉 → min
Ax≤b

with integer A, b and c. To find the exact solution of Ax = b one can

use polynomial Gauss algorithm O
(
n3
)
.

What is about Ax≤ b? Let’s introduce

Λ =
m,n

∑
i, j=1,1

log2
∣∣ai j
∣∣+ m

∑
i=1

log2 |bi|+ log2 (mn)+1.

If Ax≤ b is compatible, then there exists such x∗ that ‖x∗‖∞
≤ 2Λ , Ax∗≤ b otherwise

min
x
‖(Ax−b)+‖∞

≥ 2−(Λ−1).

So one should reformulate Ax≤ b as nonsmooth convex optimization problem

‖(Ax−b)+‖∞
→ min
‖x∗‖∞≤2Λ

.

The approach is to apply ellipsoid method for this problem with ε = 2−Λ .
Works in O(nΛ)-bit arithmetic with Õ

(
mn+n2

)
cost of PC memory one can

find x∗ (if it’s exist) for Õ
(
n3
(
n2 +m

)
Λ
)

a.o. Note, that in the ideal arithmetic with
real numbers it is still an open question [10]: is it possible to find the exact solution
of LP problem (with real numbers) in polynomial time in ideal arithmetic (π · e –
costs O(1)).

Table 1 describes (for more details see [9, 15, 61]) optimal estimates for the
number of oracle calls for convex optimization problem (13) in the case when N ≤ n.
Now Q is not necessarily compact set.

Table 1 Optimal estimates for the number of oracle calls

N ≤ n | f (y)− f (x)| ≤M ‖y− x‖ ‖∇ f (y)−∇ f (x)‖∗ ≤ L‖y− x‖

f (x) convex O
(

M2R2

ε2

)
O
(√

LR2

ε

)
f (x) µ−strongly convex in
‖‖-norm

Õ
(

M2

µε

)
Õ
(√

L
µ

⌈
ln
(

µR2

ε

)⌉)
(∀ N)

Here R is a “distance” (up to a lnn-factor) between starting point and the nearest
solution

R = Õ
(∥∥x0− x∗

∥∥) .
Let’s describe optimal method in the most simple case: Q = Rn, ‖‖= ‖‖2 [64, 55].
Define

Bn
2 (x∗,R) = {x ∈ Rn : ‖x− x∗‖2 ≤ R} .

The main iterative process is (for simplicity we’ll denote arbitrary element of ∂ f (x)
as ∇ f (x))

xk+1= xk−h∇ f
(

xk
)
. (14)
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Assume that under x ∈ Bn
2

(
x∗,
√

2R
)
‖∇ f (x)‖2 ≤M, (15)

where R =
∥∥x0− x∗

∥∥
2.

Hence, from (14), (15) we have∥∥∥x− xk+1
∥∥∥2

2
=
∥∥∥x− xk +h∇ f

(
xk
)∥∥∥2

2
=

=
∥∥∥x− xk

∥∥∥2

2
+2h

〈
∇ f
(

xk
)
,x− xk

〉
+h2

∥∥∥∇ f
(

xk
)∥∥∥2

2
≤

≤
∥∥∥x− xk

∥∥∥2

2
+2h

〈
∇ f
(

xk
)
,x− xk

〉
+h2M2.

Here we choose x = x∗ (if x∗ isn’t unique, we choose the nearest x∗ to x0)

f

(
1
N

N−1

∑
k=0

xk

)
− f∗ ≤

1
N

N−1

∑
k=0

f
(

xk
)
− f (x∗)≤

1
N

N−1

∑
k=0

〈
∇ f
(

xk
)
,xk− x∗

〉
≤

≤ 1
2hN

N−1

∑
k=0

{∥∥∥x∗− xk
∥∥∥2

2
−
∥∥∥x∗− xk+1

∥∥∥2

2

}
+

hM2

2
=

=
1

2hN

(∥∥x∗− x0∥∥2
2−
∥∥x∗− xN∥∥2

2

)
+

hM2

2
.

If

h =
R

M
√

N
, x̄N =

1
N

N−1

∑
k=0

xk, (16)

then
f
(
x̄N)− f∗ ≤

MR√
N
. (17)

Note that the precise lower bound for fixed steps first-order methods for the class of
convex optimization problems with (15) [26]

f
(
xN)− f∗ ≥

MR√
N +1

.

Inequality (17) means that (see also Table 1)

N =
M2R2

ε2 , h =
ε

M2 .

So, one can mentioned that if we will use in (14)

xk+1= xk−hk∇ f
(

xk
)
, hk =

ε

‖∇ f (xk)‖2
2

(18)
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the result (17) holds true with [55]

x̄N =
1

N−1
∑

k=0
hk

N−1

∑
k=0

hkxk.

If we put in (18),

hk =
R

‖∇ f (xk)‖2
√

N
,

like in (16), the result analogues to (17) also holds true

min
k=0,...,N−1

f
(

xk
)
− f∗ ≤

MR√
N

not only for the convex functions, but also for quasi-convex functions [13, 53]:

f (αx+(1−α)y)≤max{ f (x), f (y)} for all x,y ∈ Q,α ∈ [0,1].

Note that

0≤ 1
2hk

(∥∥x∗− x0∥∥2
2−
∥∥∥x∗− xk

∥∥∥2

2

)
+

hM2

2
,

Hence for all k = 0, ...,N∥∥∥x∗− xk
∥∥∥2

2
≤
∥∥x∗− x0∥∥2

2 +h2M2k ≤ 2
∥∥x∗− x0∥∥2

2 ,

therefore ∥∥∥xk− x∗
∥∥∥

2
≤
√

2
∥∥x0− x∗

∥∥
2 , k = 0, ...,N. (19)

Inequality (19) justifies that we need assumption (15) holds true only with x ∈
Bn

2

(
x∗,
√

2R
)

.
For the general (constrained) case (13) we introduce norm ‖‖, prox-function

d (x) ≥ 0 (d
(
x0
)
= 0) which is 1-strongly convex due to ‖‖ and Bregman’s di-

vergence [9]
V (x,z) = d (x)−d (z)−〈∇d (z) ,x− z〉 .

We put R2 = V
(
x∗,x0

)
, where x∗ – is solution of (13) (if x∗ isn’t unique then we

assume that x∗ is minimized V
(
x∗,x0

)
). So instead of (15) we’ll have (‖∇ f (x)‖∗ ≤

M) for all x : V (x,x∗)≤ 2V (x0,x∗).

2V
(

x,xk+1
)
≤ 2V

(
x,xk

)
+2h

〈
∇ f
(

xk
)
,x− xk

〉
+h2M2.

Mirror Descent [49, 9] for k = 0, ...,N−1

xk+1= Mirrxk

(
h∂ f

(
xk
))

, Mirrxk (v) = argmin
x∈Q

{〈
v,x− xk

〉
+V

(
x,xk

)}
.
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And analogues of formulas (16), (17) are also valid

f
(
x̄N)− f∗ ≤

√
2MR√

N
,
∥∥∥xk− x∗

∥∥∥≤ 2
√

V (x∗,x0), h =
ε

M2 .

Typically,
1
2

∥∥x∗− x0∥∥2 ≤ R2 ≤C lnn ·
∥∥x∗− x0∥∥2

.

Example (unit simplex). We have

Q = Sn (1) =

{
x ∈ Rn

+ :
n

∑
i=1

xi = 1

}
, ‖∇ f (x)‖

∞
≤M∞, x ∈ Q,

‖‖= ‖‖1 , d (x)= lnn+
n

∑
i=1

xi lnxi, h=M−1
∞

√
2lnn

/
N, x0

i = 1
/

n, i= 1, ...,n.

For k = 0, ...,N−1, i = 1, ...,n

xk+1
i =

exp
(
−h

k
∑

r=1
∇i f (xr)

)
n
∑

l=1
exp
(
−h

k
∑

r=1
∇l f (xr)

) =
xk

i exp
(
−h∇i f

(
xk
))

n
∑

l=1
xk

l exp(−h∇l f (xk))
.

The main result here is

f
(
x̄N)− f∗ ≤M∞

√
2lnn

N
, x̄N =

1
N

N−1

∑
k=0

xk.

Note, that if we use‖‖2-norm and d (x) = 1
2

∥∥x− x0
∥∥2

2 here, we will have more com-
plicated iterations (2-norm projections on unit simplex) and

f
(
x̄N)− f∗ ≤

M2√
N
, ‖∇ f (x)‖2 ≤M2, x ∈ Q.

Since typicallyM2 = O(
√

nM∞), it is worth to use ‖‖1-norm.
Assume now that f (x) in (13) is additionally µ-strongly convex in ‖‖2 norm:

µ

2
‖x− y‖2

2 ≤ f (x) for all x,y ∈ Q.

Let

xk+1= Mirrxk

(
hk∇ f

(
xk
))

= argmin
x∈Q

{
hk

〈
∇ f
(

xk
)
,x− xk

〉
+

1
2

∥∥∥x− xk
∥∥∥2

2

}
,

where
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hk =
2

µ · (k+1)
, d (x) =

1
2

∥∥x− x0∥∥2
2 , ‖∇ f (x)‖2 ≤M, x ∈ Q.

Then [67]

f

(
N

∑
k=1

2k
k (k+1)

xk

)
− f∗ ≤

2M2

µ · (k+1)
.

Hence (see also Table 1),

N ' 2M2

µε
.

This bound is also unimprovable up to a constant factor [51, 61].

5 Looking into the Black-Box

In this section we consider how special structure of some non-smooth problems
can be used to solve non-smooth optimization problems with the convergence rate
O
( 1

k

)
, which is faster than the lover bound O

(
1√
k

)
for general class of non-smooth

convex problems [51]. Nevertheless, there is no contradiction as additional structure
is used and we are looking inside the black-box.

5.1 Nesterov’s smoothing

In this subsection, following [54], we consider the problem

min
x∈Q1⊂E1

{ f (x) = h(x)+ max
u∈Q2⊂E2

{〈Ax,u〉−φ(u)}}, (20)

where A : E1 → E∗2 is a linear operator, φ(u) is a continuous convex function on
Q2, Q1,Q2 are convex compacts, h is convex function with Lh-Lipschitz-continuous
gradient.

Let us consider an example of f (x) = ‖Ax−b‖∞ with A ∈ Rm×n. Then,

f (x) = max
u∈Rm

{〈u,Ax−b〉 : ‖u‖1 ≤ 1} ,

h = 0, E2 = Rm, φ(u) = 〈u,b〉 and Q2 is the ball in 1-norm.
The main idea of Nesterov is to add regularization inside the definition of f in

(20). More precisely, a prox-function d2(u) (see definition in Section 4) is intro-
duced for the set Q2 and a smoothed counterpart fµ(x) for f is defined as

fµ(x) = h(x)+max
u∈Q2
{〈Ax,u〉−φ(u)−µd2(u)}
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and uµ(x) is the optimal solution of this maximization problem.

x

fµ (x)

f (x)

Fig. 2 Function fµ (x) is a smooth approximation to non-smooth function f (x).

Theorem 2 ([54]). The function fµ(x) is well defined, convex and continuously dif-
ferentiable at any x ∈ E1 with ∇ fµ(x) = ∇h(x) +A∗uµ(x). Moreover, ∇ fµ(x) is

Lipschitz continuous with constant Lµ = Lh +
‖A‖21,2

µ
.

Here the adjoint operator A∗ is defined by equality 〈Ax,u〉= 〈A∗u,x〉, x∈ E1,u∈ E2
and the norm of the operator ‖A‖1,2 is defined by ‖A‖1,2 =maxx,u{〈Ax,u〉 : ‖x‖E1 =
1,‖u‖E2 = 1}.

Since Q2 is bounded, fµ(x) is a uniform approximation for the function f ,
namely, for all x ∈ Q1,

fµ(x)≤ f (x)≤ fµ(x)+µD2, (21)

where D2 = max{d2(u) : u ∈ Q2}.
Then, the idea is to choose µ sufficiently small and apply accelerated gradient

method to minimize fµ(x) on Q1. We use accelerated gradient method from [34, 33]
which is different from the original method of [54].

Theorem 3 ([34, 33]). Let the sequences {xk,yk,zk,αk,Ck}, k ≥ 0 be generated by
Algorithm 1. Then, for all k ≥ 0, it holds that

f (yk)− f ∗ ≤ 4LV [z0](x?)
(k+1)2 . (26)

Following the same steps as in the proof of Theorem 3 in [54], we obtain

Theorem 4. Let Algorithm 1 be applied to minimize fµ(x) on Q1 with µ =
2‖A‖1,2

N+1

√
D1
D2

,
where D1 = max{d1(x) : x ∈ Q1}. Then, after N iterations, we have



16 Contents

Algorithm 1 Accelerated Gradient Method
Input: Objective f (x), feasible set Q, Lipschitz constant L of the ∇ f (x), starting point x0 ∈ Q, ,

prox-setup: d(x) – 1-strongly convex w.r.t. ‖ · ‖E1 , V [z](x) := d(x)−d(z)−〈∇d(z),x− z〉.
1: Set k = 0, C0 = α0 = 0, y0 = z0 = x0.
2: for k = 0,1, ... do
3: Find αk+1 as the largest root of the equation

Ck+1 :=Ck +αk+1 = Lα
2
k+1. (22)

4:

xk+1 =
αk+1zk +Ckyk

Ck+1
. (23)

5:
zk+1 = argmin

x∈Q
{V [zk](x)+αk+1( f (xk+1)+ 〈∇ f (xk+1),x−xk+1〉)}. (24)

6:

yk+1 =
αk+1zk+1 +Ckyk

Ck+1
. (25)

7: Set k = k+1.
8: end for

Output: The point yk+1.

0≤ f (yN)− f? ≤
4‖A‖1,2

√
D1D2

N +1
+

4LhD1

(N +1)2 . (27)

Proof. Applying Theorem 3 to fµ , and using (21), we obtain

0≤ f (yN)− f? ≤ fµ(yN)+µD2− fµ(x?µ)≤ µD2 +
4Lµ D1

(N +1)2 +
4LhD1

(N +1)2

= µD2 +
4‖A‖2

1,2D1

µ(N +1)2 +
4LhD1

(N +1)2 .

Substituting the value of µ from the theorem statement, we finish the proof.

A generalization of the smoothing technique for the case of non-compact sets
Q1,Q2, which is especially interesting when dealing with problems dual to problems
with linear constraints, can be found in [72]. Ubiquitous entropic regularization of
optimal transport [20] can be seen as a particular case of the application of smooth-
ing technique, especially in the context of Wasserstein barycenters [21, 74, 30].

5.2 Nemirovski’s Mirror Prox

In his paper [48], Nemirovski considers problem (20) in the following form
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min
x∈Q1⊂E1

{ f (x) = h(x)+ max
u∈Q2⊂E2

{〈Ax,u〉+ 〈b,u〉}}, (28)

pointing to the fact that this problem is as general as (20). Indeed, the change of
variables u← (u, t) and the feasible set Q2← {(u, t) : minu′∈Q2 φ(u′) ≤ t ≤ φ(u)}
allows to make φ linear. His idea is to consider problem (28) directly as a convex-
concave saddle point problem and associated weak variational inequality (VI).

Find z? = (x?,u?) ∈ Q1×Q2 s.t. 〈Φ(z),z?− z〉 ≤ 0 ∀z ∈ Q1×Q2, (29)

where the operator

Φ(z) =
(

∇h(x)+A∗u
−Ax−b

)
(30)

is monotone, i.e. 〈Φ(z1)−Φ(z2),z1−z2〉≥ 0, and Lipschitz-continuous, i.e. ‖Φ(z1)−
Φ(z2)‖∗ ≤ L‖z1− z2‖. With the appropriate choice of norm on E1×E2 and prox-
function for Q1×Q2, see Section 5 in [48], the Lipschitz constant for Φ can be
estimated as L = 2‖A‖1,2

√
D1D2 +LhD1.

Algorithm 2 Mirror Prox
Input: General VI on a set Q⊂ E with operator Φ(z), Lipschitz constant L of Φ(z), prox-setup:

d(z), V [z](w).
1: Set k = 0, z0 = argminz∈Q d(z).
2: for k = 0,1, ... do
3: Calculate

wk = argmin
z∈Q

{
〈Φ(zk),z〉+LV [zk](z)

}
. (31)

4: Calculate
zk+1 = argmin

z∈Q

{
〈Φ(wk),z〉+LV [zk](z)

}
. (32)

5: Set k = k+1.
6: end for

Output: ŵk = 1
k ∑

k−1
i=0 wi.

Theorem 5 ([48]). Assume that Φ(z) is monotone and L-Lipschitz-continuous.
Then, for any k ≥ 1 and any u ∈ Q,

max
z∈Q
〈Φ(z), ŵk− z〉 ≤ L

k
max
z∈Q

V [z0](z). (33)

Moreover, if the VI is associated with a convex-concave saddle point problem, i.e.

• E = E1×E2,
• Q = Q1×Q2 with convex compact sets Q1 ⊂ E1, Q2 ⊂ E2

• Φ(z)=Φ(x,u)=
(

∇x f (x,u)
−∇u f (x,u)

)
for a continuously differentiable function f (x,u)

which is convex in x ∈ Q1 and concave in u ∈ Q2,
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then

[max
u∈Q2

f (x̂k,u)−min
x∈Q1

max
u∈Q2

f (x,u)]+[min
x∈Q1

max
u∈Q2

f (x,u)−min
x∈Q1

f (x, ûk)]≤ L
k

max
z∈Q

V [z0](z).

(34)

Proof. Let us fix some iteration k ≥ 0. By the first-order optimality conditions in
(31) and (32), we have, for any u ∈ Q,

〈Φ(zk)+L∇d(wk)−L∇d(zk),u−wk〉 ≥ 0,

〈Φ(wk)+L∇d(zk+1)−L∇d(zk),u− zk+1〉 ≥ 0.

Whence, for all u ∈ Q,

〈Φ(wk),wk−u〉= 〈Φ(wk),zk+1−u〉+ 〈Φ(wk),wk− zk+1〉 ≤

≤ L〈∇d(zk)−∇d(zk+1),zk+1−u〉+ 〈Φ(wk),wk− zk+1〉=

= L(d(u)−d(zk)−〈∇d(zk),u−zk〉)−L(d(u)−d(zk+1)−〈∇d(zk+1),u−zk+1〉)−

−L(d(zk)−d(zk+1)−〈∇d(zk+1),zk− zk+1〉)+ 〈Φ(wk),wk− zk+1〉=

= LV [zk](u)−LV [zk+1](u)−LV [zk](zk+1)+ 〈Φ(wk),wk− zk+1〉.

Further, for all u ∈ Q,

〈Φ(wk),wk− zk+1〉−LV [zk](zk+1)

= 〈Φ(wk)−Φ(zk),wk− zk+1〉−LV [zk](zk+1)+ 〈Φ(zk),wk− zk+1〉 ≤

≤ 〈Φ(wk)−Φ(zk),wk−zk+1〉+L〈∇d(zk)−∇d(wk),wk−zk+1〉−LV [zk](zk+1) =

= 〈Φ(wk)−Φ(zk),wk− zk+1〉+L〈∇d(zk)−∇d(wk),wk− zk+1〉−

−L(d(zk+1)−d(zk)−〈∇d(zk),zk+1− zk〉) = 〈Φ(wk)−Φ(zk),wk− zk+1〉−

−L(d(wk)−d(zk)−〈∇d(zk),wk−zk〉)−L(d(zk+1)−d(wk)−〈∇d(wk),zk+1−wk〉)=

= 〈Φ(wk)−Φ(zk),wk− zk+1〉−LV [zk](wk)−LV [wk](zk+1)≤

≤ 〈Φ(wk)−Φ(zk),wk− zk+1〉− L
2
(‖zk−wk‖2 +‖zk+1−wk‖2)≤ 0,

where in the last inequality we used the Lipschitz continuity of Φ .
Further, we obtain, for all u ∈ Q and i≥ 0,

〈Φ(wi),wi−u〉 ≤ LV [zi](u)−LV [zi+1](u).

Summing up these inequalities for i from 0 to k−1, and using the monotonicity of
Φ we have:

〈Φ(u), ŵk−u〉 ≤ 1
k

k−1

∑
i=0
〈Φ(wi),wi−u〉 ≤ L

k
(V [z0](u)−V [zk](u)).
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Taking maximum in u, we obtain the first statement of the Theorem. The second
statement is straighforward by the definition of Φ for saddle-point problems.

Choosing appropriately the norm in the space E1×E2 and applying Mirror Prox
algorithm to solve problem (28) as a saddle point problem, we obtain that the saddle
point error in the l.h.s. of (34) decays as 2‖A‖1,2

√
D1D2+LhD1
k . This is slightly worse

than the rate in (26) since the accelerated gradient method allows the faster decay
for the smooth part h(x). An accelerated Mirror Prox method with the same rate as
in (26) can be found in [18].

5.3 Universal Mirror Prox

Now we consider universal analogue of A.S. Nemirovsky’s proximal mirror method
for variational inequalities with a Holder-continuous operator. Main idea of the this
method is the adaptive choice of constants and level of smoothness in minimized
prox-mappings at each iteration. These constants are related to the Hölder constant
of the operator and this method allows to find a suitable constant at each iteration.

Algorithm 3 Universal Mirror Prox
Input: General VI on a set Q ⊂ E with operator Φ(z), accuracy ε > 0, initial guess M−1 > 0,

prox-setup: d(z), V [z](w).
1: Set k = 0, z0 = argminz∈Q d(z).
2: for k = 0,1, ... do
3: Set ik = 0
4: repeat
5: Set Mk = 2ik−1Mk−1.
6: Calculate

wk = argmin
z∈Q

{
〈Φ(zk),z〉+MkV [zk](z)

}
. (35)

7: Calculate
zk+1 = argmin

z∈Q

{
〈Φ(wk),z〉+MkV [zk](z)

}
. (36)

8: ik = ik +1.
9: until

〈Φ(wk)−Φ(zk),wk− zk+1〉 ≤ Mk

2

(
‖wk− zk‖2 +‖wk− zk+1‖2

)
+

ε

2
. (37)

10: Set k = k+1.
11: end for
Output: ŵk = 1

k ∑
k−1
i=0 wi.
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Theorem 6 ([35]). For any k ≥ 1 and any z ∈ Q,

1

∑
k−1
i=0 M−1

i

k−1

∑
i=0

M−1
i 〈Φ(wi),wi− z〉 ≤ 1

∑
k−1
i=0 M−1

i
(V [z0](z)−V [zk](z))+

ε

2
. (38)

Note that if maxz∈Q V [z0](z)≤ D, we can construct the following adaptive stop-
ping criterion for our algorithm

D

∑
k−1
i=0 M−1

i
≤ ε

2
.

Next, we consider the case of Hölder-continuous operator Φ and show that Al-
gorithm 3 is universal. Assume for some ν ∈ [0,1] and Lν ≥ 0

‖Φ(x)−Φ(y)‖∗ ≤ Lν‖x−y‖ν , x,y ∈ Q.

holds. The following inequality is a generalization of (72) for VI. For any x,y,z∈Q
and δ > 0,

〈Φ(y)−Φ(x),y− z〉 ≤ ‖Φ(y)−Φ(x)‖∗‖y− z‖ ≤ Lν‖x−y‖ν‖y− z‖ ≤

≤ 1
2

(
1
δ

) 1−ν
1+ν

L
2

1+ν

ν

(
‖x−y‖2 +‖y− z‖2)+ δ

2
,

where

L(δ ) =
(

1
δ

) 1−ν
1+ν

L
2

1+ν

ν . (39)

So, we have

〈Φ(y)−Φ(x),y− z〉 ≤ L(δ )
2
(
‖y−x‖2 +‖y− z‖2)+δ . (40)

Let us consider estimates of the necessary number of iterations are obtained to
achieve a given quality of the variational inequality solution.

Corollary 1 (Universal Method for VI). Assume that the operator Φ is Hölder

continuous with constant Lν for some ν ∈ [0,1] and M−1 ≤
( 2

ε

) 1−ν
1+ν L

2
1+ν

ν . Also as-
sume that the set Q is bounded. Then, for all k ≥ 0, we have

max
z∈Q
〈Φ(z), ŵk− z〉 ≤ (2Lν)

2
1+ν

kε
1−ν
1+ν

max
z∈Q

V [z0](z)+
ε

2
(41)

As it follows from (40), if Mk ≥ L( ε

2 ), (37) holds. Thus, for all i = 0, ...,k−1, we
have Mi ≤ 2 ·L( ε

2 ) and
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1

∑
k−1
i=0 M−1

i
≤

2L( ε

2 )

k
≤ (2Lν)

2
1+ν

kε
1−ν
1+ν

,

(41) holds. Here L(·) is defined in (39). ut
Let us add some remarks.

Remark 1. Since the algorithm does not use the values of parameters ν and Lν , we
obtain the following iteration complexity bound

2 inf
ν∈[0,1]

(
2Lν

ε

) 2
1+ν

·max
z∈Q

V [z0](z)

to achieve
max
z∈Q
〈Φ(z), ŵk− z〉 ≤ ε.

Remark 2. We can apply this method to convex-concave saddle problems of the
form

f (x,y)→ min
x∈Q1

max
y∈Q2

, (42)

where Q1,2 are convex compacts in Rn, f is convex in x and concave in y, there is
ν ∈ [0,1] and constants L11,ν ,L12,ν ,L21,ν ,L22,ν<+∞:

‖∇x f (x+∆x,y+∆y)−∇x f (x,y)‖1,∗ ≤ L11,ν‖∆x‖ν
1 +L12,ν‖∆y‖ν

2 ,

‖∇y f (x+∆x,y+∆y)−∇y f (x,y)‖2,∗ ≤ L21,ν‖∆x‖ν
1 +L22,ν‖∆y‖ν

2

for all x,x+∆x ∈ Q1,y,y+∆y ∈ Q2.
It is possible to achieve an acceptable approximation (x̂, ŷ) ∈ Q1×Q2:

max
y∈Q2

f (x̂,y)−min
x∈Q1

f (x, ŷ)≤ ε (43)

for the saddle point (x∗,y∗) ∈ Q1×Q2 of the (42) problem in no more than

O

((
1
ε

) 2
1+ν

)

iterations, which indicates the optimality of the proposed method, at least for ν = 0
and ν = 1. However, in practice experiments show that (43) can be achieved much
faster due to the adaptability of the method.

6 Non-Smooth Optimization in Large Dimensions

The optimization of non-smooth functionals with constraints attracts widespread
interest in large-scale optimization and its applications [8, 62]. Subgradient meth-
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ods for nonsmooth optimization have a long history starting with the method for
deterministic unconstrained problems and Euclidean setting in [70] and the general-
ization for constrained problems in [63], where the idea of steps switching between
the direction of subgradient of the objective and the direction of subgradient of the
constraint was suggested. Non-Euclidean extension, usually referred to as Mirror
Descent, originated in [49, 51] and was later analyzed in [6]. An extension for con-
strained problems was proposed in [51], see also recent version in [5]. To prove
faster convergence rate of Mirror Descent for strongly convex objective in an un-
constrained case, the restart technique [50, 51, 52] was used in [38]. Usually, the
stepsize and stopping rule for Mirror Descent requires to know the Lipschitz con-
stant of the objective function and constraint, if any. Adaptive stepsizes, which do
not require this information, are considered in [49] for problems without inequality
constraints, and in [5] for constrained problems.

Formally speaking, we consider the following convex constrained minimization
problem

min{ f (x) : x ∈ X ⊂ E, g(x)≤ 0}, (44)

where X is a convex closed subset of a finite-dimensional real vector space E, f :
X → R, g : E→ R are convex functions.

We assume g to be a non-smooth Lipschitz-continuous function and the problem
(4) to be regular. The last means that there exists a point x̄ in relative interior of the
set X , such that g(x̄)< 0.

Note that, despite problem (44) contains only one inequality constraint, consid-
ered algorithms allow to solve more general problems with a number of constraints
given as {gi(x) ≤ 0, i = 1, ...,m}. The reason is that these constraints can be ag-
gregated and represented as an equivalent constraint given by {g(x) ≤ 0}, where
g(x) = maxi=1,...,m gi(x).

We consider some adaptive Mirror Descent methods [4] for the problem (44).
Both considered methods have complexity O

(
1
ε2

)
and optimal.

We consider algorithms, which are based on Mirror Descent method. Thus, we
start with the description of proximal setup and basic properties of Mirror Descent
step. Let E be a finite-dimensional real vector space and E∗ be its dual. We denote
the value of a linear function g ∈ E∗ at x ∈ E by 〈g,x〉. Let ‖ · ‖E be some norm on
E, ‖ ·‖E,∗ be its dual, defined by ‖g‖E,∗ = max

x

{
〈g,x〉,‖x‖E ≤ 1

}
. We use ∇ f (x) to

denote any subgradient of a function f at a point x ∈ dom f .
Given a vector x ∈ X0, and a vector p ∈ E∗, the Mirror Descent step is defined as

x+=Mirr[x](p) := argmin
z∈X

{
〈p,z〉+V [x](z)

}
= argmin

z∈X

{
〈p,z〉+d(z)−〈∇d(x),z〉

}
.

(45)
We make the simplicity assumption, which means that Mirr[x](p) is easily com-
putable.

The following lemma [9] describes the main property of the Mirror Descent step.
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Lemma 1. Let f be some convex function over a set X, h > 0 be a stepsize, x ∈ X0.
Let the point x+ be defined by x+ = Mirr[x](h · (∇ f (x))). Then, for any z ∈ X,

h ·
(

f (x)− f (z)
)
≤ h · 〈∇ f (x),x− z〉

≤ h2

2
‖∇ f (x)+V [x](z)−V [x+](z). (46)

The following analogue of Lemma (1) for δ -subgradients ∇δ f holds.

Lemma 2. Let f be some convex function over a set X, h > 0 be a stepsize, x ∈ X0.
Let the point x+ be defined by x+ = Mirr[x](h · (∇δ f (x))). Then, for any z ∈ X,

h ·
(

f (x)− f (z)
)
≤ h · 〈∇ f (x),x− z〉+h ·δ

≤ h2

2
‖∇δ f (x)‖+h ·δ +V [x](z)−V [x+](z).

(47)

We consider problem (44) in two different settings, namely, non-smooth Lipschitz-
continuous objective function f and general objective function f , which is not nec-
essarily Lipschitz-continuous, e.g. a quadratic function. In both cases, we assume
that g is non-smooth and is Lipschitz-continuous

|g(x)−g(y)| ≤Mg‖x−y‖E , x,y ∈ X . (48)

Let x∗ be a solution to (44). We say that a point x̃ ∈ X is an ε-solution to (44) if

f (x̃)− f (x∗)≤ ε, g(x̃)≤ ε. (49)

All considered in this item methods are applicable in the case of using δ -
subgradients instead of usual subgradients. For this case we can get an ε-solution
x̃ ∈ X :

f (x̃)− f (x∗)≤ ε +O(δ ), g(x̃)≤ ε +O(δ ). (50)

The methods we describe are based on the of Polyak’s switching subgradient method
[63] for constrained convex problems, also analyzed in [56], and Mirror Descent
method originated in [51]; see also [49].

6.1 Convex Non-Smooth Objective Function

In this subsection, we assume that f is a non-smooth Lipschitz-continuous function

| f (x)− f (y)| ≤M f ‖x−y‖E , x,y ∈ X . (51)

Let x∗ be a solution to (44) and assume that we know a constant Θ0 > 0 such that

d(x∗)≤Θ
2
0 . (52)
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For example, if X is a compact set, one can choose Θ 2
0 = maxx∈X d(x).

Algorithm 4 Adaptive Mirror Descent (Non-Smooth Objective)
Input: accuracy ε > 0; Θ0 s.t. d(x∗)≤Θ 2

0 .
1: x0 = argmin

x∈X
d(x).

2: Initialize the set I as empty set.
3: Set k = 0.
4: repeat
5: if g(xk)≤ ε then
6: Mk = ‖∇ f (xk)‖E,∗,
7: hk =

ε

M2
k

8: xk+1 = Mirr[xk](hk∇ f (xk)) (”productive step”)
9: Add k to I.

10: else
11: Mk = ‖∇g(xk)‖E,∗
12: hk =

ε

M2
k

13: xk+1 = Mirr[xk](hk∇g(xk)) (”non-productive step”)
14: end if
15: Set k = k+1.

16: until
k−1
∑
j=0

1
M2

j
≥ 2Θ 2

0
ε2

Output: x̄k :=
∑
i∈I

hixi

∑
i∈I

hi

Theorem 7. Assume that inequalities (48) and (51) hold and a known constant Θ0 >
0 is such that d(x∗)≤Θ 2

0 . Then, Algorithm 4 stops after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉
(53)

iterations and x̄k is an ε-solution to (44) in the sense of (49).

Let us now show that Algorithm 4 allows to reconstruct an approximate solution
to the problem, which is dual to (44). We consider a special type of problem (44)
with g given by

g(x) = max
i∈{1,...,m}

{
gi(x)

}
. (54)

Then, the dual problem to (44) is

ϕ(λ ) = min
x∈X

{
f (x)+

m

∑
i=1

λigi(x)
}
→ max

λi≥0,i=1,...,m
ϕ(λ ), (55)

where λi ≥ 0, i = 1, ...,m are Lagrange multipliers.
We slightly modify the assumption (52) and assume that the set X is bounded

and that we know a constant Θ0 > 0 such that
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max
x∈X

d(x)≤Θ
2
0 .

As before, denote [k] = { j ∈ {0, ...,k−1}}, J = [k]\ I. Let j ∈ J. Then a subgra-
dient of g(x) is used to make the j-th step of Algorithm 4. To find this subgradient,
it is natural to find an active constraint i ∈ 1, ...,m such that g(x j) = gi(x j) and use
∇g(x j) = ∇gi(x j) to make a step. Denote i( j) ∈ 1, ...,m the number of active con-
straint, whose subgradient is used to make a non-productive step at iteration j ∈ J. In
other words, g(x j) = gi( j)(x j) and ∇g(x j) = ∇gi( j)(x j). We define an approximate
dual solution on a step k ≥ 0 as

λ̄
k
i =

1
∑
j∈I

h j
∑

j∈J,i( j)=i
h j, i ∈ {1, ...,m}. (56)

and modify Algorithm 4 to return a pair (x̄k, λ̄ k).

Theorem 8. Assume that the set X is bounded, the inequalities (48) and (51) hold
and a known constant Θ0 > 0 is such that d(x∗)≤Θ 2

0 . Then, modified Algorithm 4
stops after not more than

k =

⌈
2max{M2

f ,M
2
g}Θ 2

0

ε2

⌉

iterations and the pair (x̄k, λ̄ k) returned by this algorithm satisfies

f (x̄k)−ϕ(λ̄ k)≤ ε, g(x̄k)≤ ε. (57)

6.2 Truss topology design problem: primal-duality and sparsity

Now we consider interesting example of huge-scale problem [58, 62] with a sparse
structure. We would like to illustrate two important ideas. Firstly, consideration of
the dual problem can simplify the solution, if it is possible to reconstruct the solution
of the primal problem by solving the dual problem. Secondly, for a special sparse
non-smooth piece-wise linear functions we suggest a very efficient implementation
of one subgradient iteration [58]. In such cases simple subgradient methods (for
example, Algorithm 4) can be useful due to the relatively inexpensive cost of itera-
tions.

Recall (see e.g. [62]) that Truss Topology Design problem consists in finding the
best mechanical structure resisting to an external force with an upper bound for the
total weight of construction. Its mathematical formulation looks as follows:

min
w∈Rm

+

{〈 f ,z〉 : A(w)z = f , 〈e,w〉= T}, (58)
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where f is a vector of external forces, z ∈ R2n is a vector of virtual displacements of
n nodes in R2, w is a vector of m bars, and T is the total weight of construction. The
compliance matrix A(w) has the following form:

A(w) =
m

∑
i=1

wiaiaT
i ,

where ai ∈ R2n are the vectors describing the interactions of two nodes connected
by an arc. These vectors are very sparse: for 2D-model they have at most 4 nonzero
elements.

Let us rewrite the problem (58) as a Linear Programming problem.

min
z,w
{〈 f ,z〉 : A(w)z = f , w≥ 0, 〈e,w〉= T}=

= min
w
{〈 f ,A−1(w) f 〉 : w ∈4(T ) = {w≥ 0, 〈e,w〉= T}}=

= min
w∈4(T )

max
z
{2〈 f ,z〉−〈A(w)z,z〉} ≥max

z
min

w∈4(T )
{2〈 f ,z〉−〈A(w)z,z〉}=

= max
z
{2〈 f ,z〉−T max

1≤i≤m
〈ai,z〉2}= max

λ ,y
{2λ 〈 f ,y〉−λ

2T max
1≤i≤m

〈ai,y〉2}=

= max
y

〈 f ,y〉2

T max
1≤i≤m

〈ai,y〉2
=

1
T

(
max

y
{〈 f ,y〉 : max

1≤i≤m
|〈ai,y〉| ≤ 1}

)2

.

(59)

Note that for the inequality in the third line we do not need any assumption.
Denote by y∗ the optimal solution of the optimization problem in the brackets.

Then there exist multipliers x∗ ∈ Rm
+ such that

f = ∑
i∈J+

aix∗i − ∑
i∈J−

aix∗i , x∗i = 0, i 6∈ J+
⋂

J−, (60)

where J+ = {i : 〈ai,y∗〉 = 1}, and J− = {i : 〈ai,y∗〉 = −1}. Multiplying the first
equation in (60) by y∗, we get

〈 f ,y∗〉= 〈e,x∗〉. (61)

Note that the first equation in (60) can be written as

f = A(x∗)y∗. (62)

Let us reconstruct now the solution of the primal problem. Denote

w∗ =
T
〈e,x∗〉

·x∗, z∗ =
〈e,x∗〉

T
·y∗. (63)

Then, in view of (62) we have f = A(w∗)z∗, and w∗ ∈4(T ). Thus, the pair (63) is
feasible for the primal problem. On the other hand,
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〈 f ,z∗〉= 〈 f , 〈e,x
∗〉

T
·y∗〉= 1

T
· 〈e,x∗〉 · 〈 f ,y∗〉= 1

T
· 〈 f ,y∗〉2.

Thus, the duality gap in the chain (59) is zero, and the pair (w∗,z∗), defined by (63)
is the optimal solution of the primal problem.

The above discussion allows us to concentrate on the following (dual) Linear
Programming problem:

max
y
{〈 f̄ ,y〉 : max

1≤i≤m
〈Pmai,y〉 ≤ 1}, (64)

which we can solve by the primal-dual Algorithm 4.
Assume that we have local truss: each node is connected only with few neigh-

bors. It allows to apply the property of sparsity for vectors ai (1 ≤ i ≤ m). In this
case the computational cost of each iteration grows as O(log2 m) [58, 62].

In [58] a special class of huge-scale problems with sparse subgradients was con-
sidered. According to [58] for smooth functions this is a very rare feature. For ex-
ample, for quadratic function f (y) = 1

2 〈Ay,y〉 the gradient ∇ f (y) = Ay usually is
dense even for a sparse matrix A.

However, the subgradients of non-smooth function f (y) = max1≤i≤m〈ai,y〉 (see
(64) above) are sparse provided that all vectors ai share this property. This fact is
based on the following observation. For the function f (y) = max1≤i≤m〈ai,y〉 with
sparse matrix A = (a1,a2, ...,am) the vector ∇ f (y) = ai(y) is a subgradient at point
y. Then the standard subgradient step

y+ = y−h ·∇ f (y)

changes only a few entries of vector y and the vector z+ = AT y+ differs from
z = AT y also in a few positions only. Thus, the function value f (y+) can be easily
updated provided that we have an efficient procedure for recomputing the maximum
of m values.

Note the objective functional in (64) is linear and the costs of iteration of Algo-
rithm 4 and considered in [58] switching simple subgradient scheme is comparable.
At the same time, the step productivity condition is simpler for Algorithm 4 as con-
sidered in [58] switching subgradient scheme. Therefore main observations for [58]
are correct for Algorithm 4.

6.3 General Convex and Quasi-Convex Objective Functions

In this subsection, we assume that the objective function f in (44) might not satisfy
(51) and, hence, its subgradients could be unbounded. One of the examples is a
quadratic function. We also assume that inequality (52) holds.

We further consider ideas in [56, 60] and adapt them for problem (44), in a way
that our algorithm allows to use non-Euclidean proximal setup, as does Mirror De-
scent, and does not require to know the constant Mg. Following [56], given a func-
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tion f for each subgradient ∇ f (x) at a point y ∈ X , we define

v f [y](x) =


〈

∇ f (x)
‖∇ f (x)‖E,∗

,x−y
〉
, ∇ f (x) 6= 0

0 ∇ f (x) = 0
, x ∈ X . (65)

Algorithm 5 Adaptive Mirror Descent (General Convex Objective)
Input: accuracy ε > 0; Θ0 s.t. d(x∗)≤Θ 2

0 .
1: x0 = argmin

x∈X
d(x).

2: Initialize the set I as empty set.
3: Set k = 0.
4: repeat
5: if g(xk)≤ ε then
6: hk =

ε

‖∇ f (xk)‖E,∗
7: xk+1 = Mirr[xk](hk∇ f (xk)) (”productive step”)
8: Add k to I.
9: else

10: hk =
ε

‖∇g(xk)‖2E,∗
11: xk+1 = Mirr[xk](hk∇g(xk)) (”non-productive step”)
12: end if
13: Set k = k+1.
14: until |I|+ ∑

j∈J

1
‖∇g(x j)‖2E,∗

≥ 2Θ 2
0

ε2

Output: x̄k := argminx j , j∈I f (x j)

The following result gives complexity estimate for Algorithm 5 in terms of
v f [x∗](x). Below we use this theorem to establish complexity result for smooth ob-
jective f .

Theorem 9. Assume that inequality (48) holds and a known constant Θ0 > 0 is such
that d(x∗)≤Θ 2

0 . Then, Algorithm 5 stops after not more than

k =

⌈
2max{1,M2

g}Θ 2
0

ε2

⌉
(66)

iterations and it holds that mini∈I v f [x∗](xi)≤ ε and g(x̄k)≤ ε .

To obtain the complexity of our algorithm in terms of the values of the objective
function f , we define non-decreasing function

ω(τ) =

{
max
x∈X
{ f (x)− f (x∗) : ‖x−x∗‖E ≤ τ} τ ≥ 0,

0 τ < 0.
(67)

and use the following lemma from [56].
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Lemma 3. Assume that f is a convex function. Then, for any x ∈ X,

f (x)− f (x∗)6 ω(v f [x∗](x)). (68)

Corollary 2. Assume that the objective function f in (44) is given as f (x) =
maxi∈{1,...,m} fi(x), where fi(x), i= 1, ...,m are differentiable with Lipschitz-continuous
gradient

‖∇ fi(x)−∇ fi(y)‖E,∗ ≤ Li‖x−y‖E ∀x,y ∈ X , i ∈ {1, ...,m}. (69)

Then x̄k is ε̃-solution to (44) in the sense of (49), where

ε̃ = max{ε,ε max
i=1,...,m

‖∇ fi(x∗)‖E,∗+ ε
2 max

i=1,...,m
Li/2}.

Remark 3. According to [53, 61] main lemma 3 holds for quasi-convex objective
functions [13] too:

f (αx+(1−α)y)≤max{ f (x) , f (y)} for all x,y,α ∈ [0,1].

This means that results of this subsection are valid for quasi-convex objectives.

Remark 4. In view of the Lipschitzness and, generally speaking, non-smoothness
of functional limitations, the obtained estimate for the number of iterations means
that the proposed method is optimal from the point of view of oracle evaluations:
O
(

1
ε2

)
iterations are sufficient for achieving the required accuracy ε of solving the

problem for the class of target functionals considered in this section of the arti-
cle. Note also that the considered algorithm 4 applies to the considered classes of
problems with constraints with convex objective functionals of different smoothness
levels. However, the non-fulfillment, generally speaking, of the Lipschitz condition
for the objective functional f does not allow one to substantiate the optimality of
the algorithms 4 in the general situation (for example, with a Lipschitz-continuous
gradient). More precisely, situations are possible when the productive steps of the
norm (sub)gradients of the objective functional ‖∇ f (xk)‖∗ are large enough and this
will interfere with the speedy achievement of the stopping criterion of the 4.

7 Universal Methods

In this section we consider problem

min
x∈Q⊆E

f (x), (70)

where Q is a convex set and f is a convex function with Hölder-continuous subgra-
dient

‖∇ f (x1)−∇ f (x2)‖∗ ≤ Lν‖x1−x2‖ν (71)
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with ν ∈ [0,1]. The case ν = 0 corresponds to non-smooth optimization and the case
ν = 1 corresponds to smooth optimization. The goal of this section is to present
the Universal Accelerated Gradient method first proposed by Nesterov [59]. This
method is a black-box method which does not require the knowledge of constants

ν ,Lν and works in accordance with the lower complexity bound O
((

Lν R1+ν

ε

) 2
1+3ν

)
obtained in [51].

The main idea is based on the observation that a non-smooth convex function
can be upper bounded by a quadratic objective function slightly shifted above. More
precisely, for any x,y ∈ Q,

f (y)≤ f (x)+ 〈∇ f (x),y−x〉+ Lν

1+ν
‖y−x‖1+ν

≤ f (x)+ 〈∇ f (x),y−x〉+ L(δ )
2
‖y−x‖2 +δ , (72)

where

L(δ ) =
(

1−ν

1+ν

1
δ

) 1−ν
1+ν

L
2

1+ν

ν .

y
x

f (x)+ 〈∇ f (x),y−x〉+ L(δ )
2 ‖y−x‖2 +δ

f (y)

δ

Fig. 3 Quadratic majorant of a non-smooth function f (x).

The next idea is to apply an accelerated gradient method with backtracking pro-
cedure to adapt for the unknown L(δ ) with appropriately chosen δ . The method we
present is based on accelerated gradient method from [34, 33] and, thus is different
from the original method of [59].

Inequality (72) guarantees that the backtracking procedure in the inner cycle is
finite.
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Algorithm 6 Universal Accelerated Gradient Method
Input: Accuracy ε , starting point x0 ∈ Q, initial guess L0 > 0, prox-setup: d(x) – 1-strongly con-

vex w.r.t. ‖ · ‖E , V [z](x) := d(x)−d(z)−〈∇d(z),x− z〉.
1: Set k = 0, C0 = α0 = 0, y0 = z0 = x0.
2: for k = 0,1, ... do
3: Set Mk = Lk/2.
4: repeat
5: Set Mk = 2Mk, find αk+1 as the largest root of the equation

Ck+1 :=Ck +αk+1 = Mkα
2
k+1. (73)

6:

xk+1 =
αk+1zk +Ckyk

Ck+1
. (74)

7:
zk+1 = argmin

x∈Q
{V [zk](x)+αk+1( f (xk+1)+ 〈∇ f (xk+1),x−xk+1〉)}. (75)

8:

yk+1 =
αk+1zk+1 +Ckyk

Ck+1
. (76)

9: until

f (yk+1)≤ f (xk+1)+ 〈∇ f (xk+1),yk+1−xk+1〉+ Mk

2
‖yk+1−xk+1‖2 +

αk+1ε

2Ck+1
. (77)

10: Set Lk+1 = Mk/2, k = k+1.
11: end for
Output: The point yk+1.

Theorem 10 ([59]). Let f satisfy (71). Then,

f (yk+1)− f? ≤
(

22+4ν L2
ν

ε1−ν k1+3ν

) 1
1+ν

V [x0](x?)+
ε

2
. (78)

Moreover, the number of oracle calls is bounded by

4(k+1)+2log2

(2V [x0](x?))
1−ν

1+3ν

(
1
ε

) 3(1−ν)
1+3ν

L
4

1+3ν

ν

 .

Translating this rate of convergence to the language of complexity, we obtain that to
obtain a solution with an accuracy ε the number of iterations is no more than

O

(
inf

ν∈[0,1]

(
Lν

ε

) 2
1+3ν (

V [x0](x?)
) 1+ν

1+3ν

)
,

i.e. is optimal.
In his paper, Nesterov considers a more general composite optimization problem
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min
x∈Q⊆E

f (x)+h(x), (79)

where h is a simple convex function, and obtains the same complexity guarantees.
Universal methods were extended for the case of strongly convex problems by a
restart technique in [66], for non-convex optimization in [36] and for the case of non-
convex optimization with inexact oracle in [29]. As we can see from (72), universal
accelerated gradient method is connected to smooth problems with inexact oracle.
The study of accelerated gradient methods with inexact oracle was first proposed
in [22] and was very well developed in [24, 31, 11, 29] including stochastic opti-
mization problems and strongly convex problems. A universal method with inexact
oracle can be found in [32]. Experiments show [59] that universal method accel-
erates to O

( 1
k

)
rate for non-smooth problems with a special ”smoothing friendly”

(see Section 5) structure. This is especially interesting for traffic flow modelling
problems, which possess such structure [3].

8 Concluding remarks

Modern numerical methods for non-smooth convex optimization problems are typ-
ically based on the structure of the problem. We start with one of the most powerful
example of such type. For geometric median search problem there exists efficient
method that significantly outperform described above lower complexity bounds
[19]. In Machine Learning we typically meet the problems with hidden affine struc-
ture and small effective dimension (SVM) that allow us to use different smoothing
techniques [1]. Description of one of these techniques (Nesterov’s smoothing tech-
nique) one can find in this survey. The other popular technique is based on averag-
ing of the function around the small ball with the center at the point in consideration
[28]. A huge amount of data since applications lead to composite optimization prob-
lems with non smooth composite (LASSO). For this class of problems accelerated
(fast) gradient methods are typically applied [7], [57], [42]. This approach (compos-
ite optimization) have been recently expanded for more general class of problems
[73]. In different Image Processing applications one can find a lot of non-smooth
problems formulations with saddle-point structure. That is the goal function has
Legendre representation. In this case one can apply special versions of accelerated
(primal-dual) methods [16], [17], [44]. Universal Mirror Prox method described
above demonstrates the alternative approach which can be applied in rather general
context. Unfortunately, the most of these tricks have proven to be beyond the scope
of this survey. But we include in the survey the description of the Universal Acceler-
ated Gradient Descent algorithm [73] which in the general case can also be applied
to a wide variety of problems.

Another important direction in Nonsmooth Convex Optimization is huge-scale
optimization for sparse problems [58]. The basic idea that reduce huge dimension
to nonsmoothness is as follows:
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〈ak,x〉−bk ≤ 0, k = 1, . . .m, m� 1

is equivalent to the single nonsmooth constraint:

max
k=1,...m

{〈ak,x〉−bk} ≤ 0.

We demonstrated this idea above on Truss Topology Design example.
One should note that we concentrate in this survey only on deterministic con-

vex optimization problems, but the most beautiful things in non smooth optimiza-
tion is that stochasticity [51], [27], [39], [40] and online context [37] in general
doesn’t change (up to a logarithmic factor in the strongly convex case) anything
in complexity estimates. As an example, of stochastic (randomized) approach one
can mentioned the work [2] where one can find reformulation of Google problem
as non smooth convex optimization problem. Special randomized Mirror Descent
algorithm allows to solve this problem almost independently on the number of ver-
texes.

Finally, let’s note that in the decentralized distributed non smooth (stochastic)
convex optimization for the last few years there appear optimal methods [43], [75],
[14].
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