Ecomonic equilibrium of traffic flows Case study of Vladivostok

E. Nurminski

Far Eastern National Uuniversity, Vladivostok

AAG Annual meeting, March 22-27, 2009 Las Vegas

< D > < 同 > < E > < E > < E > < 0 < 0</p>

General information

More then 300 mln people within 1000 km zone.

Area of Vladivostok

Population 0.55 mln..

Area of Vladivostok

Population 0.55 mln..

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Typical road situation

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 = のへ⊙

Car population of Vladivostok

Total number of cars — approx. 180 ths (2007), from those — appox. 155 ths personal autos.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Detailed graph model of Vladivostok

Table: Network characteristics

Leaves (terminal nodes)	1274
Nodes degree 2	241
Nodes degree 3	2521
Nodes degree 4	245
Nodes degree 5	9
Nodes	4290
Nontransit nodes	4049
Arcs	5172
Total length of the streets (km)	1143.37
Average dist between crossings (m)	412.026

Table: Network characteristics

Leaves (terminal nodes)	1274
Nodes degree 2	241
Nodes degree 3	2521
Nodes degree 4	245
Nodes degree 5	9
Nodes	4290
Nontransit nodes	4049
Arcs	5172
Total length of the streets (km)	1143.37
Average dist between crossings (m)	412.026

About 6.5 m/car !

Major road building projects

500

Braess transport paradox — initial stage

Initial state:

- Total demand $A \rightarrow B 6$ units.
- Traffic splits between 2 routes, user cost — 83.

Braess transport paradox — new road added

The road N 3 added:

- ► Upper route 2;
- ► Down route 2;
- Mixed (down-mid-upper) route — 2.

▶ User cost — 92. (!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

Braess transport paradox explained

The route Airport – Artyem – GameLand – Vld at system optimal traffic assignment provides a driver with opportunistic opportunity to save from 83 cost units to 70. Everybody ends up paying 92.

Noncooperative equilibrium ¹

No one driver can change his route without increasing his cost.

Mathematically speaking:

Let P_w — a set of routes, which connect a source-destination pair w = (s, d) and $G_p(x), p \in P_w$ — marginal costs for these routes as a function of traffic assignment $x_p, p \in P$ for all (P) routes.

Then $x_p > 0, p \in P_w$ implies $G_p(x) = u_w = \min_{q \in P_w} G_q(x)$.

Back to human language: *Only routes with minimal costs can be used.*

¹Wardrope J.G. Some theoretical aspects of road traffic research, Proc. of the Inst. of Civil. Eng, Part II, 1952, 1, pp. 325-378.

More mathematics: variational inequalities

Find $x^{\bullet} \in X$ such that

$$G(x^{ullet})(x-x^{ullet})\geq 0 \quad \text{for any } x\in X,$$

where feasible set

$$X = \{x : \sum_{p \in P_w} x_p = d_w, w \in W, x_p \ge 0\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

set requirements that for a given pair w = (s, d) a prescribed quantity d_w of goods, people, etc should be delivered.

This is a fixed demand problem, there is also elasic demand problem and others.

Scale of problems:

- Chicago Regional Trans Ntwk approx. 13000 nodes,40000 links, 3 mln od-pairs
- $\blacktriangleright\,$ Southern Ca model 25000 nodes, 100000 links, etc 2
- Heavy nonlinearity:
 - Traffic delays are very sensitive to the load:
 - $\tau \sim f^n, n = 4, 5, \ldots$, hence congestion, traffic jams.
 - Nonconvexity path dependence, unpredictability.
- Stochastic, dynamic and data intensive.

Main parameters of the model: 22 nodes, 31 edges, 56 od-pairs.

Numerical results

	bridge	nobridge
Number of constraints	6512	6586
Number of variables	13801	14060
Nonlinear variables	3219	3256
Total cost (carhrs) $ imes 10^7$	10.5	6.9
Iterations (MINOS)	3564	3591

Total flow for the bridge: 1400 car/hour.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 のへぐ

Vladivostok. Golden Horn bridge

(日) (四) (日) (日) (日) (日) (日)

Vladivostok test 72x10 case

Complementarity condition

