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Abstract. We consider a class of convex optimization problems in a Hilbert space that can be
solved by performing a single projection, i.e., by projecting an infeasible point onto the feasible set.
Our results improve those established for the linear programming setting in Nurminski (2015) by
considering problems that (i) may have multiple solutions, (ii) do not satisfy strict complementarity
conditions, and (iii) possess nonlinear convex constraints. As a by-product of our analysis, we provide
a quantitative estimate on the required distance between the infeasible point and the feasible set in
order for its projection to be a solution of the problem. Our analysis relies on a ``sharpness"" property
of the constraint set, a new property we introduce here.
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1. Introduction. Let \scrH be a real Hilbert space with inner product \langle \cdot , \cdot \rangle and
induced norm denoted by \| x\| =

\sqrt{} 
\langle x,x\rangle . Consider a problem of the form

min
x\in A

\langle x\ast , x\rangle ,(P)

where A \subseteq \scrH is a nonempty, closed, and convex set and \langle x\ast , \cdot \rangle is a linear function
(x\ast \not = 0). Without loss of generality, we assume that \| x\ast \| = 1. In [17], the author
shows that if \scrH is finite dimensional, A is a polyhedron, and strict complementarity
conditions hold, the linear programming problem (P) has the following property:

For every x0 \in \scrH , there exists \theta 0 > 0 such that the projection onto A
of the point x0 - \theta x\ast (which is a steepest descent step from the initial
guess x0) solves (P) for any \theta \geq \theta 0.

We refer to the aforementioned procedure as the single projection procedure (SPP) for
problem (P). Since the publication of [17], the SPP for solving linear programming
in finite dimensions has been the subject for study by the authors in [3, 6], as a
consequence of the finite convergence property of the alternating projection method
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SINGLE-PROJECTION PROCEDURE 1647

A

x∗

x0 − θx∗

x0

(a) Given a vector x0, we can find θ large enough such
that the projection of the vector x0 − θx∗ onto A solves
(P). This set A is sharp w.r.t. x∗.

x0 − θx∗

x0

A

x∗

(b) For x0 as in the figure, there is no θ > 0 such
that the projection of the vector x0 − θx∗ onto A
solves (P). This set A is not sharp w.r.t. x∗.

Fig. 1.1. The single-projection procedure extends beyond linear programming. As shown in
Figure 1.1(a), the set A does not need to be polyhedral for the procedure to work, but the sharpness
property at x\ast is required (see Definition 3.2).

performed on a polyhedral set and a closed half space in the case when these sets are
not intersecting.

The aims of the present paper can be summarized as follows: (i) extend the SPP
to the infinite dimensional setting; (ii) show that the SPP remains valid in more gen-
eral settings, including nonlinear convex constraints, nonunique solutions, and/or in
the absence of the strict complementarity property; and (iii) provide quantitative es-
timates on the value of \theta 0 needed for the SPP to work. To this end, we show that the
SPP is valid for problems satisfying a new property called sharpness (see Figure 1.1),
which we introduce here. In the particular case of problem (P), the sharpness prop-
erty holds when there is a positive lower bound for the distance between the (unit)
vector  - x\ast and the normal cone NA(\cdot ) at every nonoptimal point of problem (P) (see
Definition 3.2).

In this context, problem (P) can be solved by the SPP (see Theorem 4.5 and
Lemma 4.6) whenever \theta is sufficiently large and x0 is sufficiently far from being optimal
in the sense that \bigl\langle 

x\ast , x0  - \theta x\ast 
\bigr\rangle 

=
\bigl\langle 
x\ast , x0

\bigr\rangle 
 - \theta < inf

x\in A
\langle x\ast , x\rangle .

Furthermore, as polyhedral sets are sharp with respect to every unit vector (see
Proposition 3.14), our analysis shows that every solvable linear programming problem
can be solved by the SPP. As a consequence, this work extends the main results of
[17, Theorem 1] to Hilbert spaces. The setting of potentially convex objective func-
tions is dealt with in Theorem 4.13 and its corollary.

As mentioned above, our analysis relies on a new notion of ``sharpness"" for sets,
which this work also studies in its own right in section 3. Roughly speaking, a set A
is sharp with respect to x\ast if and only if

inf
x\in A\setminus FA(x\ast )

d(x\ast ,NA(x))> 0,

where FA(x\ast ) denotes the face of A defined by a vector x\ast (see Definition 3.1). In
order to contextualize sharpness in the broad literature, we explore the property from
three perspectives:

\bullet Sharpness of the epigraph: When the set A is the epigraph of a convex func-
tion, we provide characterizations of sharpness in terms of its subdifferential.
This includes establishing that the epigraph of a function is sharp with respect
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1648 BUI, BURACHIK, NURMINSKI, AND TAM

to the vector (0\scrH , - 1) if and only if it satisfies a global Kurdyka--\Lojasiewicz
(KL) property with exponent 0 (Proposition 3.15). Moreover, we show that
a set A is sharp with respect to x\ast if and only if the function 1A(\cdot )  - \langle x\ast , \cdot \rangle 
has the global KL property with exponent 0, where 1A(\cdot ) is the indicator
function of the set A.

\bullet Dual characterizations: The analysis in [17] relies on the presence of strict
complementarity. This condition, which is often not satisfied, is known to
imply uniqueness of solutions of the linear optimization problem and that
the interior of the normal cone of the feasible set at this optimal solution
contains the vector  - x\ast . On the other hand, we show in Proposition 3.20
that sharpness holds under much weaker conditions; in particular, we allow
nonunique optimal solutions. Namely, we require only that the interior of the
union of the normal vectors of A at all optimal solutions must contain  - x\ast .
Consequently, although the strict complementarity condition can easily fail
for general linear programming problems, our sharpness condition holds for
every polyhedral set and for every nonzero vector x\ast (see Proposition 3.14).

\bullet Metric characterizations: We show that sharpness with respect to x\ast is equiv-
alent to a subtransversality property between the set A and its supporting
hyperplane at x\ast (see Corollary 3.28). As such, the sharpness property can
be connected with well-known geometric properties in the literature.

The remainder of the present paper is organized as follows. In section 2, we
provide essential results that will be used in subsequent sections. Section 3 formally
introduces the new notion of the sharpness property and its connections with some
existing geometric properties of sets. Section 4 contains our main results on the SPP
for solving problem (P) and its extension to general convex problems in which the
objective function is not necessarily linear. Finally, section 5 lists some open questions
and discussion.

2. Preliminaries. We start this section by setting the theoretical framework
and recalling the standard definitions for future use. As stated in the introduction,
\scrH is a real Hilbert space with inner product \langle \cdot , \cdot \rangle and induced norm \| \cdot \| . Given a set
C \subset \scrH , the distance from C to x is denoted by dC(x) := infz\in C \| x - z\| .

We use the notation \BbbR \infty := \BbbR \cup \{ \infty \} . Given A\subset \scrH , we denote by intA, clA, and
bdA its topological interior, closure, and boundary, respectively. Unless specifically
mentioned, we consider the strong topology in \scrH . We will denote by \scrB := \{ u \in \scrH :
\| u\| \leq 1\} the closed unit ball in \scrH and by \scrS := \{ u \in \scrB : \| u\| = 1\} the boundary of \scrB .
Consequently, the open unit ball is \scrB \setminus \scrS = \{ u \in \scrB : \| u\| < 1\} . Therefore, the open
ball of radius r > 0 and center x0 \in \scrH is x0 + r (\scrB \setminus \scrS ), and the closed ball of radius
r > 0 and center x0 \in \scrH is x0 + r\scrB .

We will consider the product space \scrH 2 = \scrH \times \scrH with the max norm \| \cdot \| \infty . Namely,
given (x, y) \in \scrH 2, we consider \| (x, y)\| \infty := max\{ \| x\| ,\| y\| \} . Given this norm in \scrH 2, it
is well known that its dual norm (i.e., the norm in the dual space of (\scrH 2,\| \cdot \| \infty )) is
the norm

\| (x, y)\| \ast := \| x\| + \| y\| .(2.1)

For the closed unit ball in \scrH 2 induced by the sum norm, we will use the notation
B\ast 

\scrH 2 . Namely,

B\ast 
\scrH 2 := \{ (u, v) \in \scrH 2 : \| u\| + \| v\| \leq 1\} .(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SINGLE-PROJECTION PROCEDURE 1649

Definition 2.1. Let C \subset \scrH be a nonempty, closed, and convex set. Let x \in \scrH .
By [2, Theorem 3.16], there exists a unique element in C that minimizes the distance
from C to x. We denote this element by PC(x) (it is also called the best approximation
to x from C). Namely, dC(x) = infz\in C \| z  - x\| = \| x - PC(x)\| . When convenient, we
may also use the notation d(x,C) := dC(x).

Let f : \scrH \rightarrow \BbbR \infty . The set domf := \{ x\in \scrH : f(x)<\infty \} is the domain (or effective
domain) of f . We say that f : \scrH \rightarrow \BbbR \infty is proper if domf \not = \emptyset . Suppose f is proper
and the function f\ast : \scrH \rightarrow \BbbR \infty defined by

f\ast (x\ast ) := sup
x\in \scrH 

\{ \langle x,x\ast \rangle  - f(x)\} 

is the Fenchel conjugate of f at x\ast \in \scrH . The epigraph of f is epif :=
\bigl\{ 

(x, r) \in \scrH \times \BbbR :
f(x) \leq r

\bigr\} 
. A function f is said to be (strongly) lower semicontinuous (lsc) when its

epigraph is (strongly) closed. In the latter situation, we say that f is closed. If f
is convex with a closed epigraph, then f is also weakly lsc (i.e., epif is closed in the
weak topology). Given a convex function f , recall that the subdifferential of f is the
point-to-set mapping \partial f : \scrH \rightrightarrows \scrH defined by

\partial f(x) :=

\Biggl\{ 
\{ x\ast \in \scrH : (\forall y \in \scrH ) \langle y - x,x\ast \rangle + f(x) \leq f(y)\} ifx\in domf,

\emptyset if x /\in domf.
(2.3)

Note that for points at the boundary of domf , the subdifferential may or may not
exist (i.e., the set in the first line in (2.3) may be empty).

Definition 2.2. Given a point-to-set map T : \scrH \rightrightarrows \scrH , we consider the following
sets:

(a) The domain of T is the set D(T ) := \{ x\in \scrH : T (x) \not = \emptyset \} .
(b) The range of T is the set R(T ) := \{ v \in \scrH : \exists x\in \scrH , v \in T (x)\} .
(c) The graph of T is the set G(T ) := \{ (x, v) \in \scrH \times \scrH : v \in T (x)\} .

For a fixed nonzero vector u\in \scrH , we will denote by \BbbR +(u) := \{ tu : t\geq 0\} = cone[u]
the cone (also called the ray) generated by u. Given J a nonempty set and a collection
of elements (ui)i\in J \subset \scrH indexed by J , we denote by cone[ui, i \in J ] the convex cone
generated by the collection. If J = \{ 1, . . . , l\} is finite, then

cone[u1, . . . , ul] =

l\sum 
i=1

cone[ui] =

l\sum 
i=1

\BbbR +(ui),(2.4)

where we are using the fact that cone[A\cup B] = cone[A] + cone[B]. Note that in these
definitions we are using the notation cone[C] for the convex cone generated by a setC.

Definition 2.3. Given a subset A\subset \scrH and a point x \in \scrH , the point-to-set map
NA : \scrH \rightrightarrows \scrH defined by

NA(x) :=

\Biggl\{ 
\{ x\ast \in \scrH : (\forall a\in A) \langle a - x,x\ast \rangle \leq 0\} if x\in A,
\emptyset otherwise,

is called the normal cone of a set A at the point x.

Fact 2.4 (see [2, Proposition 16.35]). Let f : \scrH \rightarrow \BbbR \infty be a convex, proper, and lsc
function. Denote by D := domf and by E := epif . Fix x\in D. Then, NE((x, f(x)) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1650 BUI, BURACHIK, NURMINSKI, AND TAM

\BbbR ++(\partial f(x)\times \{  - 1\} )
\bigcup 

(ND(x)\times \{ 0\} ), where \BbbR ++V := \{ t v : t > 0, v \in V \} denotes the
positive cones generated by a set V . Equivalently,

NE((x, f(x)) = \{ (u, \eta ) \in \scrH \times \BbbR : \eta <0 and u/( - \eta ) \in \partial f(x)\} 
\cup \{ (u,0) \in \scrH \times \BbbR : u\in ND(x)\} .(2.5)

By [2, Proposition 16.17(i)], for every x \in bdD, we can either have \partial f(x) = \emptyset or
\partial f(x) unbounded. In the latter case, i.e., when x \in bdD and \partial f(x) \not = \emptyset , we have
\partial f(x) +ND(x) \subset \partial f(x).

Recall that the indicator function of a subset A\subset \scrH is the function 1A : \scrH \rightarrow \BbbR \infty 
such that 1A(x) = 0 when x \in A and 1A(x) = +\infty otherwise. Hence, dom1A =A. If
A is a nonempty, closed and convex set, 1A is a proper, lsc, and convex function. In
this situation, (2.3) yields

\partial (1A(x)) =NA(x) for all x\in \scrH ,(2.6)

and note that \partial (1A(x)) = \emptyset otherwise. In this case, we can use the maximal mono-
tonicity of the map \partial (1A)(\cdot ) to deduce that the graph of NA, given by the set
G(NA) := \{ (x,x\ast ) \in A\times \scrH : x\ast \in NA(x)\} , is closed w.r.t. the strong-weak topology
(i.e., w.r.t. the strong topology in the first coordinate and w.r.t. the weak topology
in the second coordinate). We call this type of closedness demiclosedness (note that
G(NA) is also closed when considering the weak topology in the first coordinate and
the strong topology in the second one).

Remark 2.5. Fix z0 \in \scrH . Consider the function \varphi z0 : \scrH \rightarrow \BbbR defined as \varphi z0(x) :=
\| x - z0\| , where \| \cdot \| is any given norm in \scrH . In this situation, the Fenchel-conjugate
of \varphi z0 is given by \varphi \ast 

z0 = 1\scrB \ast + \langle z0, \cdot \rangle , where \scrB \ast is the closed dual unit ball, i.e., the
unit ball with respect to the norm which is dual to the given norm \| \cdot \| . Moreover,
by [2, Example 16.62] (see also [21, Corollary 2.4.16]),

\partial \varphi z0(x) =

\biggl\{ 
\{ (x - z0)/\| x - z0\| \} if x \not = z0,
\scrB \ast if x= z0.

(2.7)

Consequently, \varphi z0 is smooth at every x \not = z0 (see [2, Proposition 17.32]).

Remark 2.6. For future use, we recall here a fact involving the subdifferential of
a maximum of two norms in the product space. Fix \^z = (\^z1, \^z2) \in \scrH \times \scrH . Consider
the function \Theta \^z : \scrH \times \scrH \rightarrow \BbbR defined as

\Theta \^z(x, y) := max\{ \| x - \^z1\| ,\| y - \^z2\| \} = max\{ \varphi \^z1(x),\varphi \^z2(y)\} ,

where we are using the notation introduced in Remark 2.5 in the second equality.
Note that

\Theta \^z(\^z1, \^z2) = 0 =\varphi \^z1(\^z1) =\varphi \^z2(\^z2).(2.8)

Denote by \partial 1 and \partial 2 the partial subdifferentials w.r.t. the first and second variable,
respectively. Define also \Theta 1(x, y) := \varphi \^z1(x) for every x, y \in \scrH and \Theta 2(x, y) := \varphi \^z2(y)
for every x, y \in \scrH so that \Theta \^z(x, y) = max\{ \Theta 1(x, y),\Theta 2(x, y)\} . Using Remark 2.5 and
the fact that \Theta 1 does not depend on the second variable, we have that

\partial \Theta 1(\^z1, \^z2) =
\bigl( 
\partial 1\Theta 1(\^z1, \^z2), \partial 2\Theta 1(\^z1, \^z2)

\bigr) 
=
\bigl( 
\partial 1\Theta 1(\^z1, \^z2),0

\bigr) 
= (\partial \varphi \^z1(\^z1),0) = \scrB \ast \times \{ 0\} ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SINGLE-PROJECTION PROCEDURE 1651

where we used (2.7) in the last equality. Similarly, we obtain \partial \Theta 2(\^z1, \^z2) = (\partial 1\Theta 2

(\^z1, \^z2), \partial 2\Theta 2(\^z1, \^z2)) = \{ 0\} \times \scrB \ast . The classical theorem of Dubovitskii and Milyutin
(see [2, Theorem 18.5]), which computes the subdifferential of a maximum of functions,
together with (2.8), yields

\partial \Theta \^z(\^z1, \^z2) = conv\{ (B\ast \times \{ 0\} ) \cup (\{ 0\} \times B\ast )\} = \{ (u, v) \in \scrH \times \scrH : \| u\| + \| v\| \leq 1\} 
= \scrB \ast 

\scrH 2 .

(Here, conv (A) denotes the convex hull of the set A, which is the smallest convex
set that contains A, whereas conv(A) is the closure of its convex hull.) The second
equality can be easily checked, while in the last equality we use the notation introduced
in (2.2).

Definition 2.7. Fix m \in \BbbN \ast (i.e., m \in \BbbN and m \not = 0) and b \in \BbbR m. Let \BbbA :
\scrH \rightarrow \BbbR m be a bounded linear operator. Recall that the adjoint operator of \BbbA is the
(bounded) linear map \BbbA \ast : \BbbR m \rightarrow \scrH defined by the equality

\langle \BbbA x,u\rangle = \langle x,\BbbA \ast u\rangle \forall (x,u) \in \scrH \times \BbbR m.(2.9)

Note that in (2.9) we are using the same notation for the inner products in \scrH and
in \BbbR m. From [5, Remark 16], we have that, when \BbbA is bounded, \BbbA \ast is also bounded
and both maps have the same norm.

Definition 2.8. Take \BbbA and b as in Definition 2.7. Denote by \scrB m := \{ e1, . . . , em\} 
the canonical basis in \BbbR m. A polyhedron or polyhedral set induced by a linear map
\BbbA and a vector b is the set

C(\BbbA , b) := \{ x\in \scrH : \BbbA x\leq b\} := \{ x\in \scrH : \langle \BbbA x, ej\rangle \leq bj for all j = 1, . . . ,m\} .(2.10)

Hence, a polyhedral set is a finite intersection of level sets of linear maps. Given x\in \scrH ,
the set I(x) := \{ j \in \{ 1, . . . ,m\} : \langle \BbbA x, ej\rangle = bj\} identifies the inequality constraints that
are active at x. We say that a function f : \scrH \rightarrow \BbbR \infty is polyhedral when its epigraph
is a polyhedral subset of \scrH \times \BbbR .

The normal cone to a polyhedral set will have an important role in our analysis,
so we recall [15, Corollary 4.1], valid in a locally convex space. Polyhedral sets in
these general spaces are defined in a manner similar to that in Definition 2.8, where
\scrH is replaced by a locally convex space denoted by X.

Proposition 2.9 (see [15, Corollary 4.1]). Let X be a locally convex space, and
let C1, . . . ,Cm be polyhedral subsets of X with C := \cap m

i=1Ci \not = \emptyset . Then, for all x \in C,
we have NC(x) =

\sum m
i=1NCi

(x).

We recall Ekeland's variational principle, which holds in the setting of metric
spaces.

Lemma 2.10 (Ekeland's variational principle [10, Theorem 1.1]). Let X be a
complete metric space, let \psi : X \rightarrow \BbbR \infty be lsc, let \=w \in X, and let \varepsilon > 0. If \psi ( \=w) <
infw\in X \psi (x) + \varepsilon , then, for any \lambda > 0, there exists \^w\lambda \in X such that the following
hold:

(i) d( \^w\lambda , \=w)<\lambda ;
(ii) \psi ( \^w\lambda ) \leq \psi ( \=w);

(iii) \psi (w) + (\varepsilon /\lambda )d(w, \^w\lambda )>\psi ( \^w\lambda ) for all w \in X \setminus \{ \^w\lambda \} .
The next simple fact will be used in later sections.
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1652 BUI, BURACHIK, NURMINSKI, AND TAM

Fact 2.11. Let u, v \in \scrH be such that \| u\| = \| v\| = 1. Then,

d(u, cone[v])2 = 1  - max(0, \langle u, v\rangle )2.

Proof. Denote t\ast = \langle u, v\rangle . Then, d(u, cone[v])2 = mint\geq 0 \| u - tv\| 2 = mint\geq 0(1 +
t2  - 2t\ast t) = 1 - maxt\geq 0( - t2 + 2t\ast t) = 1  - max(0, t\ast )2.

3. Sharp sets and their characterizations. Figure 1.1 illustrates that, for
the SPP to work, the set A must possess certain geometric properties. In this section,
we formally define a property that allows problem (P) to be solved by the SPP. Our
focus is on a geometric property associated with the presence of ``sharp corners"" of a
convex subset of a Hilbert space.

3.1. Definition and examples.
Definition 3.1. We define the face of a convex set A\subset \scrH with respect to x\ast \not = 0

as FA(x\ast ) := \{ x\in A : \langle x\ast , x\rangle = supA \langle x\ast , \cdot \rangle \} = ArgmaxA \langle x\ast , \cdot \rangle . A closed convex subset
F 0 \subset A is said to be an exposed face of A if there is x\ast \in \scrH such that F 0 = FA(x\ast ).

The next definition will be crucial in our analysis.

Definition 3.2. Let A\subset \scrH be closed and convex, let x\ast \in \scrS , and let \alpha > 0. We
say that A is \alpha -sharp with respect to x\ast if, for all x \in A such that x\ast /\in NA(x), we
have

d (x\ast ,NA(x)) \geq \alpha .(3.1)

The modulus of sharpness of A w.r.t. x\ast , denoted by sr[A,x\ast ], is defined as

sr[A,x\ast ] := inf
x\in A,x\ast /\in NA(x)

d(x\ast ,NA(x)).(3.2)

Then, A is sharp w.r.t. vector x\ast if sr[A,x\ast ]> 0.

Remark 3.3. From the definition, A is \alpha -sharp w.r.t. to the vector x\ast if and only
if sr[A,x\ast ] \geq \alpha . The definition of sharpness involves taking an infimum over the set
\{ x\in A : x\ast /\in NA(x)\} . When the latter set is empty, we have that x\ast \in NA(x) for every
x \in A. This implies that \langle x\ast , x\rangle = supA \langle x\ast , \cdot \rangle for all x \in A. Hence, A = FA(x\ast ). In
this case, A is trivially sharp w.r.t. x\ast by vacuity, and from (3.2), with the convention
that inf \emptyset = +\infty , we deduce that sr[A,x\ast ] = +\infty . We also note that, since \| x\ast \| = 1
and 0\in NA(x) for any x\in A, we always have that \alpha \leq 1 if the set \{ x\in A : x\ast /\in NA(x)\} 
is nonempty.

The following result relates faces of sets with the sharpness property in Defini-
tion 3.2.

Fact 3.4. Let A be a closed convex set. Fix x \in A and x\ast \in \scrS . The following
statements are equivalent:

(i) x\ast \in NA(x).
(ii) x\in FA(x\ast ).

(iii) x\in ArgmaxA \langle x\ast , \cdot \rangle .
Consequently, for any \alpha \geq 0, we have

sr[A,x\ast ] \geq \alpha \Leftarrow \Rightarrow d(x\ast ,NA(x)) \geq \alpha \forall x\in A \setminus FA(x\ast ).

Proof. Using the definitions and the notation of Definition 3.2, we can write

x\ast \in NA(x) \Leftarrow \Rightarrow \langle x\ast , y - x\rangle \leq 0 \forall y \in A\Leftarrow \Rightarrow \langle x\ast , x\rangle = sup
y\in A

\langle x\ast , y\rangle \Leftarrow \Rightarrow x\in FA(x\ast ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

34
.7

.5
7.

23
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



SINGLE-PROJECTION PROCEDURE 1653

which proves the equivalence between (i) and (ii) in the first statement. The equiva-
lence between (ii) and (iii) in the first statement follows from the fact that FA(x\ast ) =
Argmax \langle x\ast , \cdot \rangle . To complete the proof, note that the equivalence between (i) and (ii)
implies that x\in A \setminus FA(x\ast ) \Leftarrow \Rightarrow x\in A and x\ast /\in NA(x). Therefore,

sr[A,x\ast ] \geq \alpha \Leftarrow \Rightarrow d(x\ast ,NA(x)) \geq \alpha \forall x\in A,x\ast /\in NA(x),
\Leftarrow \Rightarrow d(x\ast ,NA(x)) \geq \alpha \forall x\in A \setminus F (x\ast ),

establishing the last claim.

Remark 3.5. Figure 3.1 illustrates simple two-dimensional examples of the sharp-
ness property with respect to a given vector and its connection with faces of the set A.
In Figure 3.1(a), the ``rounded"" section of the boundary of A approaches \=x smoothly.
We note, however, that sharpness can also fail for sets whose boundary is not rounded
as in Figure 3.1. We illustrate this situation in the next example.

Example 3.6. Consider the set A \subset \BbbR 2 as the epigraph of the convex function

f : \BbbR \rightarrow \BbbR \infty defined as follows: f(x) := +\infty if x <  - 1, f(x) :=  - (3n2+3n+1)x+(2n+1)
n2(n+1)2

if x \in [ - 1/n, - 1/(n + 1)], n \in \BbbN , and f(x) := 0 if x \geq 0. The boundary of the set
A to the left of 0 is determined by a piecewise linear function which at the points
an :=  - 1/n attains the value 1/n3 and is linear between an and an+1 (n = 1,2, . . . ).
This function is nonsmooth because it has kinks at each an. It is convex because its
slopes monotonically increase to zero. The latter fact also implies that A is not sharp
w.r.t. x\ast := (0, - 1). Therefore, a set with nonsmooth boundary need not satisfy the
sharpness condition.

Remark 3.7. When the closed and convex set A is bounded, the lack of sharpness
implies a continuity property of the restriction of the point-to-set map NA(\cdot ) to the
boundary of A. Indeed, if sr[A,x\ast ] = 0, then the definition directly implies the
existence of a sequence (xn, x

\ast 
n) \subset G(NA) with x\ast \not \in NA(xn) and s.t. x\ast n \rightarrow x\ast 

strongly. The boundedness of A implies that there exist \=x and a subsequence (xnk
) of

(xn) weakly converging to \=x. For simplicity, we still call this subsequence (xn). Since
G(NA) is demiclosed, (\=x,x\ast ) \in G(NA). The latter fact, together with x\ast \not \in NA(xn),
implies that xn \not = \=x for all n. Altogether, we have a sequence (xn, x

\ast 
n) \subset G(NA) s.t.

the following hold:
(i) x\ast n \rightarrow x\ast strongly; x\ast \not \in NA(xn).

(ii) There exists \=x\in A s.t. xn \rightarrow \=x weakly, with xn \not = \=x for all n.
In particular, in Figure 3.1(a), for any positive number r > 0, there exist y\ast \in Br(x\ast )
and y \in Br(\=x) \setminus F such that y\ast \in NA(y). Note here that \=x is an extreme point of the
set A in Figures 3.1(a) and (b). However, the point \=x in Figure 3.1(b) is an exposed

A

x̄

x∗

F

(a) The set A is not sharp w.r.t.x∗: there exist a sequence
(xn, x∗

n) ⊂ bd A × H with x∗
n ∈ NA (xn), x∗

n=x∗ (n ∈ N)
such that (xn) converges to x̄, and (x∗

n) converges to x∗.

A

x̄

x∗

F

(b) The set A is sharp w.r.t. x∗: there exists r > 0
such that, for any y∗ ∈ Br (x∗) and x ∈ A with y∗ 

∈ NA (x), it must hold that x∗ ∈ NA (x).

Fig. 3.1. An illustration of the sharpness property. In both figures, F is a supporting hyperplane
of A at \=x. The set A is not sharp w.r.t. the vector x\ast in Figure 3.1(a). In Figure 3.1(b), there exists
no sequence (xn) outside the face A\cap F , such that x\ast \in cl

\bigcup 
nNA(xn). See Remark 3.5.
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1654 BUI, BURACHIK, NURMINSKI, AND TAM

point (i.e., there exists a hyperplane H such that A \cap H = \{ \=x\} ), whereas the point
\=x in Figure 3.1(a) is not an exposed point (since the only supporting hyperplane of
A at \=x is F ). In Figure 3.1(b) it is easy to note that there is \alpha \in (0,1) such that for
every y \in A with x\ast /\in NA(y) we will have that d(x\ast ,NA(y)) \geq \alpha .

Remark 3.8. From Fact 3.4(i)--(ii), we know that x\ast /\in R(NA) if and only if
FA(x\ast ) = \emptyset . We note that this situation cannot hold when A is bounded. Indeed, in
this case we can use [2, Corollary 21.25] to obtain R(NA) = \scrH . Namely, there is no
x\ast verifying x\ast /\in R(NA). We also note that, in general, the set R(NA) can neither
be closed nor convex. However, it is well known (see, e.g., [2, Corollary 21.25] or [7,
Theorem 4.4.9]) that cl R(NA) is a closed and convex set.

For an unbounded set A, we next characterize for which x\ast /\in R(NA) we have that
A is sharp w.r.t. x\ast .

Proposition 3.9. Fix x\ast \in \scrS , and assume that A \subset \scrH is a nonempty, closed,
and convex set such that x\ast /\in R(NA). Then, A is sharp w.r.t. x\ast if and only if x\ast /\in 
bd R(NA). In this situation, A must be unbounded.

Proof. The fact that A is unbounded follows from Remark 3.8. We show first
that if x\ast \in bd R(NA), then A is not sharp w.r.t. x\ast . Indeed, in this case, we can
take a sequence (xn) \subset A such that x\ast \not = x\ast n \in NA(xn) with x\ast = limn x

\ast 
n. The fact

that x\ast \not = x\ast n holds because x\ast /\in R(NA). Hence,

inf
x\in A,x\ast /\in NA(x)

d(x\ast ,NA(x)) \leq lim
n\rightarrow \infty 

d(x\ast , x\ast n) = 0,

so A is not sharp w.r.t. x\ast . Conversely, assume that x\ast /\in bd R(NA). Since we also
have that x\ast /\in R(NA), we deduce that x\ast /\in cl R(NA) =:R. Then, there exists \alpha > 0
such that \alpha = d(x\ast ,R) = infv\in R(NA) d(x\ast , v) \leq infx\in A,x\ast /\in NA(x) d(x\ast ,NA(x)), so A is
sharp w.r.t. x\ast .

We illustrate the last result in the next two examples. In the first example, we have
that x\ast /\in R(NA) but x\ast \in bd R(NA), while in the second example, x\ast /\in cl R(NA).

Example 3.10. If A := epig, where g : \BbbR \rightarrow \BbbR \infty is defined as g(t) = 1/t if t > 0
and g(t) = +\infty otherwise, then it is easy to check that x\ast := (0, - 1) /\in R(NA) but
x\ast \in bd R(NA). Hence, we are not in the conditions of Proposition 3.9. Let us check
that A is not sharp w.r.t. x\ast . Indeed, for xn := (n,1/n) we have ( - 1/n2, - 1) \in NA(xn)
and x\ast = (0, - 1) = limn\rightarrow \infty ( - 1/n2, - 1), so d(x\ast ,NA(n,1/n)) = 0, and hence A is not
sharp w.r.t. x\ast .

Example 3.11. Let A = \BbbR 2
+ be the nonnegative orthant in \BbbR 2, and let x\ast =

(1/
\surd 

2)(1,1). Then, x\ast \not \in cl R(NA) and we are in the conditions of Proposition 3.9. It
can be verified that A is 1-sharp w.r.t. x\ast . Indeed, if x \in intA, then NA(x) = \{ 0\} so
d (x\ast ,NA(x)) = d(x\ast ,0) = 1. If x= t(1,0) for t > 0, then NA(x) = \{ s(0, - 1) : s\geq 0\} .
Using Fact 2.11 with u := x\ast and v := (0, - 1), we obtain d (x\ast ,NA(x)) = 1. An
identical argument shows that d (x\ast ,NA(x)) = 1 for x= (0, t) for t > 0. In the latter
case, we use Fact 2.11 with u := x\ast and v := ( - 1,0). Finally, if x = (0,0), then
NA(x) = \BbbR 2

 - , so again we have d (x\ast ,NA(x)) = d
\bigl( 
x\ast ,\BbbR 2

 - 
\bigr) 

= 1.

We show in the next result that when the set A is bounded, the constant sr[A,x\ast ]
is exactly the infimum of the distance between x\ast and every vector y\ast such that the
face FA(y\ast ) does not intersect with the face FA(x\ast ). This observation holds true even
in the infinite dimensional setting.
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SINGLE-PROJECTION PROCEDURE 1655

Proposition 3.12. Suppose A is a nonempty, bounded, and closed convex set.
Fix x\ast \in \scrS and \alpha \in (0,1]. Then, A is \alpha -sharp w.r.t. x\ast if and only if, for every
y\ast \in \scrH \setminus \{ 0\} such that FA(y\ast ) \cap FA(x\ast ) = \emptyset , we have

\| x\ast  - y\ast \| \geq \alpha .(3.3)

Consequently, sr[A,x\ast ] = infFA(y\ast )\cap FA(x\ast )=\emptyset 
y\ast \not =0

\| x\ast  - y\ast \| .

Proof. Note that because the set A is nonempty and bounded, from [2, Corol-
lary 21.25], the set ArgmaxA \langle y\ast , \cdot \rangle is nonempty for any y\ast \in \scrH \setminus \{ 0\} ; therefore, from
Fact 3.4, the face FA(y\ast ) is also nonempty.

First, suppose that the set A is \alpha -sharp w.r.t. x\ast \in \scrS . If FA(x\ast ) \cap FA(y\ast ) is
nonempty for every y\ast \in \scrH \setminus \{ 0\} , then (3.3) in Proposition 3.12 holds true immediately.
Otherwise, assume that there exists y\ast \in \scrH \setminus \{ 0\} such that FA(y\ast ) \cap FA(x\ast ) = \emptyset . By
Fact 3.4, for any y \in FA(y\ast ), we have that y\ast \in NA(y). Because FA(y\ast )\cap FA(x\ast ) = \emptyset ,
we must have y \not \in FA(x\ast ), and again Fact 3.4 yields x\ast /\in NA(y). Then, the \alpha -
sharpness property implies that

\| x\ast  - y\ast \| \geq d(x\ast ,NA(y)) \geq inf
y\prime \in A,x\ast /\in NA(y\prime )

d(x\ast ,NA(y\prime )) = sr[A,x\ast ] \geq \alpha ,

which shows (3.3). The second statement follows directly by taking infimum in the
expression above.

Conversely, suppose that for every y\ast \in \scrH \setminus \{ 0\} satisfying FA(y\ast ) \cap FA(x\ast ) = \emptyset ,
it holds that \| x\ast  - y\ast \| \geq \alpha . We now show that the set A must be \alpha -sharp w.r.t. x\ast .
In fact, suppose to the contrary that the set A is not \alpha -sharp w.r.t. x\ast . Then, there
is y \in A such that x\ast /\in NA(y) and d(x\ast ,NA(y)) < \alpha . Take y\ast \in NA(y) such that
\| x\ast  - y\ast \| < \alpha , and take \varepsilon \in (0, \alpha  - \| x\ast  - y\ast \| ). Note that because x\ast /\in NA(y) and
y\ast \in NA(y), we have

\langle x\ast , y\rangle < supz\in A \langle x\ast , z\rangle and \langle y\ast , y - x\rangle \geq 0 \forall x\in A.
Then, for every x\in FA(x\ast ), we have \langle x\ast , x\rangle = supz\in A \langle x\ast , z\rangle , and

\langle y\ast  - \varepsilon x\ast , y - x\rangle = \langle y\ast , y - x\rangle  - \varepsilon \langle x\ast , y - x\rangle 
= \langle y\ast , y - x\rangle  - \varepsilon (\langle x\ast , y\rangle  - sup

z\in A
\langle x\ast , z\rangle )> 0.

The above expression yields \langle y\ast  - \varepsilon x\ast , x\rangle < supz\in A \langle y\ast  - \varepsilon x\ast , z\rangle , which implies that
x /\in FA(y\ast  - \varepsilon x\ast ). Because x\in FA(x\ast ) is chosen arbitrarily, we have FA(x\ast )\cap FA(y\ast  - 
\varepsilon x\ast ) = \emptyset . Now we can use the hypothesis (3.3) for y\ast  - \varepsilon x\ast instead of y\ast to obtain
\| (y\ast  - \varepsilon x\ast )  - x\ast \| \geq \alpha . On the other hand, the definition of \varepsilon yields

\| (y\ast  - x\ast )  - \varepsilon x\ast \| \leq \| y\ast  - x\ast \| + \| \varepsilon x\ast \| = \| y\ast  - x\ast \| + \varepsilon < \alpha ,

in contradiction with assumption (3.3). Therefore, we must have that A is \alpha -sharp
w.r.t. x\ast .

Remark 3.13. If the set A is unbounded, the statements in Proposition 3.12
need not hold. Indeed, if x\ast /\in R(NA), then Fact 3.4 yields FA(x\ast ) = \emptyset so FA(x\ast ) \cap 
FA(y\ast ) = \emptyset for all y\ast \in \scrH . In this situation, inequality (3.3) will not hold for every
nonzero y\ast \in \scrH . This situation is illustrated by Example 3.11. In this example,
x\ast = (1/

\surd 
2)(1,1) \not \in R(NA), FA(x\ast ) = \emptyset , and A is \alpha -sharp at x\ast with \alpha = 1. In

particular, FA(x\ast ) \cap FA(y\ast ) = \emptyset if y\ast = x\ast , in which case (3.3) is clearly false.

We show next that a polyhedron is sharp with respect to every vector x\ast \in \scrS .
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1656 BUI, BURACHIK, NURMINSKI, AND TAM

Proposition 3.14. Let A be a polyhedron defined by A := \{ x : \BbbA x \leq b\} , where
\BbbA is a bounded linear operator \BbbA : \scrH \rightarrow \BbbR m (m> 0), and b \in \BbbR m. Denote by \scrB m :=
\{ e1, . . . , em\} the canonical basis in \BbbR m. For any vector x\ast \in \scrS , let J(x\ast ) be a collection
of subsets of indexes defined as J(x\ast ) := \{ J \subset \{ 1, . . . ,m\} : x\ast /\in cone[\BbbA \ast ei]i\in J\} , and

\alpha 0 := min
\bigl\{ 

1, infJ\in J(x\ast ) d (x\ast , cone[\BbbA \ast ei]i\in J)
\bigr\} 
,(3.4)

with the convention that inf \emptyset = +\infty . Then, \alpha 0 > 0 and A is \alpha 0-sharp w.r.t. x\ast .

Proof. We first prove that the constant \alpha 0 defined in (3.4) is positive. If the
set J(x\ast ) is empty, then (3.4) becomes \alpha 0 = min\{ 1, inf \emptyset \} = 1 > 0. So, it suffices
to consider the case where J(x\ast ) \not = \emptyset . To this end, let J \in J(x\ast ) be arbitrary. By
definition, x\ast /\in cone[\BbbA \ast ei]i\in J and hence

d (x\ast , cone[\BbbA \ast ei]i\in J)> 0.(3.5)

From inequality (3.5) and the fact that the set J(x\ast ) is finite, the constant \alpha 0 in (3.4)
must be positive.

To complete the proof, we show that the constant \alpha 0 defined in (3.4) is a lower
bound of all constants \alpha such that A is \alpha -sharp w.r.t. x\ast . In other words, we will
show that sr[A,x\ast ] \geq \alpha 0 > 0. Observe that the polyhedral set A is the intersection of
m closed half spaces. Namely, using Definition 2.8 we can write

A=

m\bigcap 
i=1

\{ x : \langle ei,\BbbA x\rangle \leq \langle ei, b\rangle \} =

m\bigcap 
i=1

\{ x : \langle \BbbA \ast ei, x\rangle \leq \langle ei, b\rangle \} ,(3.6)

where we used (2.9) in the second equality. Because \BbbA is a bounded linear map,
so is \BbbA \ast , and hence for each i = 1, . . . ,m, the set Hi := \{ x : \langle \BbbA \ast ei, x\rangle \leq \langle ei, b\rangle \} is a
closed half space. Thus, the normal cone operator of Hi at a point x \in Hi is given
by NHi

(x) = cone[\BbbA \ast ei] if \langle \BbbA \ast ei, x\rangle = \langle ei, b\rangle , and NHi
(x) = \{ 0\} otherwise. We now

apply the intersection rule in Proposition 2.9 and (2.4) to derive the normal cone of
A as

NA(x) = cone[\BbbA \ast ei]i\in I(x) =
\sum 

i\in I(x)

cone[\BbbA \ast ei] \forall x\in A,(3.7)

where I(x) := \{ i : \langle x,\BbbA \ast ei\rangle = bi\} . Consider any x \in A such that x\ast /\in NA(x). Then,
by (3.7) and the definition of J(x), we have I(x) \in J(x), and

d (x\ast ,NA(x)) = d
\bigl( 
x\ast , cone[\BbbA \ast ei]i\in I(x)

\bigr) 
\geq \alpha 0,

where we used the definition of \alpha 0 in the last inequality. Hence,

\alpha 0 \leq inf
x\in A

x\ast /\in NA(x)

d(x\ast ,NA(x)) = sr[A,x\ast ],

which implies that the set A is \alpha 0-sharp w.r.t. vector x\ast .

3.2. Sharpness of the epigraph. Consider the following optimization problem:

min
x\in A

f(x),(3.8)

where A is nonempty, closed, and convex and f : \scrH \rightarrow \BbbR \infty is proper, convex, and lsc.
Assume that (3.8) has solutions, and denote its solution set by \BbbS . In connection with
this problem, we consider the following property. Assume that there exists \beta > 0 such
that

inf
x/\in \BbbS 

d(0, \partial f(x)) \geq \beta > 0.(3.9)
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SINGLE-PROJECTION PROCEDURE 1657

We note that (3.9) holds, for instance, if f is piecewise linear. Indeed, let f(x) :=
maxi=1,...,m \langle x\ast i , x\rangle + bi. Call J := \{ i, . . . ,m\} . For every x \in \scrH , define I(x) := \{ i \in 
J : f(x) = \langle x\ast i , x\rangle + bi\} . From the formula of the subdifferential of a supremum (see,
e.g., [2, Theorem 18.5] or [21, Theorem 2.4.18]), we know that \partial f(x) = co[x\ast i ]i\in I(x).
Hence, 0 /\in \partial f(x) if and only if 0 /\in co[x\ast i ]i\in I(x). Consider

\scrF := \{ I \subset J : 0 /\in co[x\ast i ]i\in I\} \subset \scrP (J),

where \scrP (J) denotes the collection of all possible subsets of J , which has cardinality
2m. So there is a finite number of possible subdifferential sets such that 0 /\in \partial f(x).
Moreover, x /\in \BbbS if and only if I(x) \in \scrF . Altogether,

inf
x/\in \BbbS 

d(0, \partial f(x)) = inf
0/\in \partial f(x)

d(0, \partial f(x)) \geq min
I\in \scrF 

d(0, co[x\ast i ]i\in I),

where we have a minimum in the rightmost expression because the infimum is taken
over the finite set \scrF . Since co[x\ast i ]i\in I is a closed convex set which doesn't contain zero,
d(0, co[x\ast i ]i\in I)> 0 for every I \in \scrF . Therefore, the minimum in the right-hand side of
the above expression is attained at some positive value b. Note that the fact that we
have a finite supremum of affine functions is essential. The function in Example 3.6
is an infinite supremum of affine functions, for which (3.9) does not hold.

The next result characterizes the case in which the epigraph of a function is sharp
w.r.t. the vector (0\scrH , - 1). The latter property turns out to be important in the last
section.

Proposition 3.15. Let f : \scrH \rightarrow \BbbR \infty be a proper, convex, and lsc function. The
following statements are equivalent:

(i) epif is \alpha -sharp w.r.t. the vector z\ast =: (0\scrH , - 1).
(ii) \alpha < 1 and f verifies (3.9) with parameter \beta := \alpha \surd 

1 - \alpha 2
.

Proof. Let E := epif and D := domf . From Fact 2.4, we have

NE((x, f(x)) = \BbbR ++(\partial f(x) \times \{  - 1\} )
\bigcup 

(ND(x) \times \{ 0\} ).(3.10)

For calculating the sharpness of E at z\ast , it is enough to consider only points of
the form (x, f(x)) since otherwise for (x, y) \in E, with y > f(x), then NE((x, y)) =
Ndomf (x) \times \{ 0\} , and hence d(z\ast ,NE((x, y)) \geq 1. Thus, for computing the sharpness
of E we need to take the infimum over the set:

K := \{ (x, f(x)) : (0, - 1) \not \in NE((x, f(x))\} 
= \{ (x, f(x)) : \partial f(x) \not = \emptyset and 0 \not \in \partial f(x), or \partial f(x) = \emptyset \} ,

where we are using (3.10) in the characterization of K. If (x, f(x)) \in K and \partial f(x) = \emptyset ,
then (3.10) gives NE((x, f(x)) =ND(x) \times \{ 0\} , so in this case we have

d (z\ast ,NE((x, f(x)))) = d((0\scrH , - 1),ND(x) \times \{ 0\} ) = inf
w\in ND(x)

\sqrt{} 
\| w\| 2 + 1 = 1.(3.11)

Fix now any (x, f(x)) \in K such that \partial f(x) \not = \emptyset , and denote \delta (x) := d(0, \partial f(x)).
Since \partial f(x) is a nonempty, closed, and convex set (see [2, Proposition 20.31]), and
0 /\in \partial f(x), we have that \delta (x) > 0. We first prove that for every (x, f(x)) \in K such
that \partial f(x) \not = \emptyset , we have

d (z\ast ,NE((x, f(x)))) =
\delta (x)\sqrt{} 
\delta (x)2 + 1

.(3.12)
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1658 BUI, BURACHIK, NURMINSKI, AND TAM

Indeed, fix (x, f(x)) \in K. Using (3.10), we have

d (z\ast ,NE((x, f(x))))

= inf
(u,\eta )\in NE((x,f(x))

d(z\ast , (u, \eta ))

= min

\biggl\{ 
inf

w\in ND(x)
d(z\ast , (w,0)), inf

u\in \partial f(x), t>0
d(z\ast , (tu, - t))

\biggr\} 
= min

\biggl\{ 
inf

w\in ND(x)

\sqrt{} 
\| w\| 2 + 1, inf

u\in \partial f(x), t>0

\sqrt{} 
t2(\| u\| 2 + 1)  - 2t+ 1

\biggr\} 
= min

\biggl\{ 
1, inf

u\in \partial f(x)

\biggl[ 
inf
t>0

\sqrt{} 
t2(\| u\| 2 + 1)  - 2t+ 1

\biggr] \biggr\} 
= min

\Biggl\{ 
1, inf

u\in \partial f(x)

\| u\| \sqrt{} 
\| u\| 2 + 1

\Biggr\} 

=
\delta (x)\sqrt{} 
\delta (x)2 + 1

,

where we are using (3.10) in the second equality and the definition of z\ast in the third
one. In the fourth equality, we are using the fact that the infimum over ND(x) is
attained at w = 0. In the fifth equality, we are using the fact that the infimum in
the expression between square brackets is attained at t\ast := 1/(\| u\| 2 + 1), and in the
sixth one we are using the fact that the latter infimum value is smaller than 1 as well
as the fact that the function g(s) := s/

\surd 
s2 + 1 is increasing over \BbbR + and attains its

minimum at s\ast := \delta (x). Hence, (3.12) holds for every (x, f(x)) \in K.
Now, we assume that (i) holds. Then by (3.11) and (3.12) this means that, for

every (x, f(x)) \in K, we have

\alpha \leq inf
(x,f(x))\in K

d (z\ast ,NE((x, f(x))))

= min

\biggl\{ 
inf

(x,f(x))\in K,\partial f(x)=\emptyset 
d (z\ast ,NE((x, f(x)))) , inf

(x,f(x))\in K,\partial f(x)\not =\emptyset 
d (z\ast ,NE((x, f(x))))

\biggr\} 
= min

\Biggl\{ 
1, inf

(x,f(x))\in K,\partial f(x)\not =\emptyset 
\delta (x)\sqrt{} 
\delta (x)2 + 1

\Biggr\} 
\leq \delta (y)\sqrt{} 

\delta (y)2 + 1
< 1

for every (y, f(y)) \in K such that \partial f(y) \not = \emptyset . Note that we are using (3.11) and (3.12)
in the second equality. So \alpha < 1, and the above expression rewrites as

\delta (y) \geq \alpha \surd 
1  - \alpha 2

\forall (y, f(y)) \in K s.t. \partial f(y) \not = \emptyset ,(3.13)

which means that (ii) holds with parameter \alpha \surd 
1 - \alpha 2

. Note that we are using the

convention that the infimum of the empty set is +\infty , so (ii) automatically holds if
\partial f(x) = \emptyset .

Conversely, if condition (ii) holds with parameter \beta = \alpha \surd 
1 - \alpha 2

, then (3.13) holds.
The latter rewrites as

\delta (y)\sqrt{} 
\delta (y)2 + 1

\geq \alpha \forall (y, f(y)) \in K s.t. \partial f(y) \not = \emptyset ,

which, together with (3.11) and (3.12), gives (i).

We illustrate the results in Proposition 3.15 by two examples in Figure 3.2. Con-
dition (3.9) is closely related with the well-known Kurdyka--\Lojasiewicz inequality.
To make this connection precise, we recall next the necessary definitions.
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SINGLE-PROJECTION PROCEDURE 1659

epi f

(0,−1)

(a) The function f(x) = x2 does not have the global KL
property, and the set epi f is not sharp w.r.t. vector (0,−1).

epi g

(0,−1)

(b) The function g(x) = |x| has the global KL
property, and the set epi g is sharp w.r.t. vector
(0,−1).

Fig. 3.2. Illustration of Proposition 3.15: epif is sharp w.r.t. vector (0, - 1) if and only if f
has the global KL property. The rationale for these figures is identical to the one given earlier for
Figure 3.1.

Definition 3.16 (Kurdyka--\Lojasiewicz inequality [4, section 2.3]). Let f : \scrH \rightarrow 
\BbbR \infty , and assume that \BbbS := argminf \not = \emptyset . Fix \=x \in \BbbS . The function f satisfies the
global Kurdyka--\Lojasiewicz (KL) property at \=x if there exists a concave continuously
differentiable function \varphi : \BbbR + \rightarrow \BbbR + with \varphi (0) = 0 and \varphi \prime > 0 such that

\varphi \prime (f(x)  - f(\=x))d(0, \partial f(x)) \geq 1 \forall x /\in \BbbS .(3.14)

In this case, we say that \varphi is a desingularizing function for f at \=x. If f satisfies
the global KL property and admits the same desingularizing function \varphi at every point
\=x\in \BbbS , then we say that f satisfies the global KL property with global desingularizing
function \varphi .

The next result establishes the connection between the global KL property and
sharpness.

Corollary 3.17. Let f : \scrH \rightarrow \BbbR \infty be a proper lsc convex function. The following
statements are equivalent:

(i) epif is \alpha -sharp w.r.t. the vector z\ast := (0\scrH , - 1).
(ii) \alpha < 1 and f satisfies the global KL property with global desingularizing func-

tion \varphi (t) = t
\surd 
1 - \alpha 2

\alpha .

Proof. The claim of the corollary follows from Proposition 3.15 because the global
KL property (ii) is equivalent to condition (ii) in Proposition 3.15.

Corollary 3.18. Let f : \scrH \rightarrow \BbbR \infty be a polyhedral function (see Definition 2.8).
Then, there exists \alpha < 1 such that f satisfies the global KL property with global
desingularizing function \varphi (t) = t

\surd 
1 - \alpha 2

\alpha . In particular, property (3.9) holds for \beta :=
\alpha \surd 

1 - \alpha 2
.

Proof. By Definition 2.8, the epigraph of a polyhedral function is a polyhedral
set. By Proposition 3.14, it is sharp with respect to any unit vector, in partic-
ular with respect to z\ast := (0\scrH , - 1). The two claims now follow from the fact
that part (i) implies (ii) in Corollary 3.17 and the fact that part (i) implies (ii) in
Proposition 3.15.

In the next result, we establish yet another connection between the sharpness
property of a set and the KL property. The result shows that a set is sharp w.r.t x\ast 

if and only if the function 1A(\cdot ) - \langle x\ast , \cdot \rangle has the KL property with exponent of 0; i.e.,
the function admits a linear global desingularizing function.

Proposition 3.19. Consider x\ast \in \scrS and a nonempty closed and convex set A.
The following statements are equivalent:

(i) The modulus of sharpness of A w.r.t. x\ast is \alpha > 0; equivalently, \alpha :=
sr[A,x\ast ]> 0.
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1660 BUI, BURACHIK, NURMINSKI, AND TAM

(ii) The function f(x) := 1A(x)  - \langle x\ast , x\rangle satisfies the global KL property with
global desingularizing function \varphi (t) = t

\alpha .
(iii) The function f as in (ii) satisfies (3.9) with \beta := \alpha .

If, under any of the above conditions, we have \alpha < 1, then epif is (\alpha /
\surd 

1 + \alpha 2)-sharp
w.r.t. z\ast := (0\scrH , - 1).

Proof. The definition of f yields \partial f(x) =NA(x) - x\ast for all x\in \scrH . Thus, for any
x \in A, x\ast /\in NA(x) if and only if 0 /\in \partial f(x). Therefore, x /\in argminf if and only if
x\ast /\in NA(x). The equivalence above implies that

d(0, \partial f(x)) = d(0,NA(x)  - x\ast ) = d(x\ast ,NA(x)),(3.15)

which, combined with the fact that \varphi \prime (t) = 1/\alpha , gives, for all x /\in argminf , \=x \in 
argminf ,

(1/\alpha )d(0, \partial f(x)) =\varphi \prime (f(x)  - f(\=x))d(0, \partial f(x)) = (1/\alpha )d(x\ast ,NA(x)).

The three equivalences follow directly from the expression above and the definitions.
As for the last statement, assume that \alpha < 1. Since (i)--(iii) are all equivalent, we can
use Proposition 3.15(ii) for \beta := \alpha . Indeed, by (iii) we have that \delta (x) \geq \alpha . By (3.12),
this implies that, whenever \partial f(x) \not = \emptyset and 0 /\in \partial f(x),

d (z\ast ,NE((x, f(x)))) =
\delta (x)\sqrt{} 
\delta (x)2 + 1

\geq \alpha \surd 
1 + \alpha 2

,

where we used the fact that the function g(s) := s/
\surd 
s2 + 1 is increasing over \BbbR +. By

(3.11), we know that d (z\ast ,NE((x, f(x)))) = 1 if \partial f(x) = \emptyset . Altogether, and using the
same set K as in the proof of Proposition 3.15, we can write

inf
(x,f(x))\in K

d (z\ast ,NE((x, f(x)))

= min

\left\{         inf
(x, f(x)) \in K,
\partial f(x) = \emptyset 

d (z\ast ,NE((x, f(x))) , inf
(x, f(x)) \in K,
\partial f(x) \not = \emptyset 

d (z\ast ,NE((x, f(x)))

\right\}         
\geq min

\biggl\{ 
1,

\alpha \surd 
1 + \alpha 2

\biggr\} 
=

\alpha \surd 
1 + \alpha 2

,

establishing the last claim.

3.3. Dual characterizations. As seen in Figure 3.1, the sharpness property of
the set A w.r.t. vector x\ast is related to the condition that x\ast belongs to the interior of
the set

\bigcup 
x\in FA(x\ast )NA(x). The next result explores this connection in general settings.

We recall that the open ball of radius r > 0 and center x0 is written as x0 + r (\scrB \setminus \scrS )
and that the corresponding closed ball is x0 + r\scrB .

Proposition 3.20. Consider a nonempty closed convex set A of a Hilbert space
\scrH , a vector x\ast \in \scrS , and a positive constant \alpha \in (0,1]. Consider the following state-
ments:

(i) The set A is \alpha -sharp w.r.t. x\ast .
(ii) x\ast + \alpha (\scrB \setminus \scrS ) \subset \bigcup x\in FA(x\ast )NA(x).

Then, (ii) \Rightarrow (i). If the set A is bounded, then (i) \Rightarrow (ii).
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SINGLE-PROJECTION PROCEDURE 1661

x\ast 

y\ast 
z\ast 

\alpha 

Fig. 3.3. Here, y\ast belongs to the open segment (x\ast , z\ast ).

Proof. We first prove (ii) \Rightarrow (i). Suppose (ii) holds. We now prove that for any
vector y \in A satisfying

d(x\ast ,NA(y))<\alpha ,(3.16)

this implies that x\ast \in NA(y). This statement then implies that inequality (3.1) must
hold for any x\in A with x\ast /\in NA(x).

Suppose to the contrary that there is y \in A such that (3.16) holds and x\ast /\in NA(y).
From the inequality (3.16), we can choose y\ast \in NA(y) such that 0 < \| x\ast  - y\ast \| < \alpha .
Hence, y\ast \in x\ast + \alpha (\scrB \setminus \scrS ). Because x\ast + \alpha (\scrB \setminus \scrS ) is an open set, there exists r > 0
such that y\ast + r\scrB \subset x\ast + \alpha (\scrB \setminus \scrS ). Let t0 := 1 + r

\| y\ast  - x\ast \| and z\ast := x\ast + t0(y\ast  - x\ast )

(see Figure 3.3). Using these definitions, we can write

\| z\ast  - y\ast \| =
\bigm\| \bigm\| \bigm\| \Bigl( x\ast +

\Bigl( 
1 + r

\| y\ast  - x\ast \| 

\Bigr) 
(y\ast  - x\ast )

\Bigr) 
 - y\ast 

\bigm\| \bigm\| \bigm\| =
\bigm\| \bigm\| \bigm\| r
\| y\ast  - x\ast \| (y\ast  - x\ast )

\bigm\| \bigm\| \bigm\| = r.

This gives z\ast = x\ast + t0(y\ast  - x\ast ) \in y\ast +r\scrB \subset x\ast +\alpha (\scrB \setminus \scrS ), where we used the definition
of r in the last inclusion.

Now we can use assumption (ii). Namely, z\ast \in x\ast + \alpha (\scrB \setminus \scrS ) \subset \bigcup x\in FA(x\ast )NA(x).
Hence, there exists z \in FA(x\ast ) such that z\ast \in NA(z). Since z \in FA(x\ast ), Fact 3.4
yields x\ast \in NA(z). Altogether, both of the vectors x\ast and z\ast belong to the normal
cone NA(z). From the fact that y \in A and z\ast \in NA(z),

\langle z\ast , y - z\rangle \leq 0.(3.17)

Recall that x\ast /\in NA(y), and x\ast \in NA(z). Using Fact 3.4, the latter gives z \in 
ArgmaxA \langle x\ast , \cdot \rangle and y /\in ArgmaxA \langle x\ast , \cdot \rangle . Therefore, we can write

\langle x\ast , y\rangle < \langle x\ast , z\rangle = sup
A

\langle x\ast , \cdot \rangle .(3.18)

From y\ast \in NA(y) and z \in A, we also have \langle y\ast , z\rangle \leq \langle y\ast , y\rangle . We now use this inequality
and (3.18), together with the fact that z\ast = x\ast + t0(y\ast  - x\ast ) and t0 > 1, to derive the
following estimation:

\langle z\ast , y\rangle = \langle t0y\ast + (1  - t0)x\ast , y\rangle 
= t0 \langle y\ast , y\rangle + (1  - t0) \langle x\ast , y\rangle > t0 \langle y\ast , z\rangle + (1  - t0) \langle x\ast , z\rangle 
= \langle t0y\ast + (1  - t0)x\ast , z\rangle = \langle z\ast , z\rangle ,

which contradicts (3.17). Therefore, we must have x\ast \in NA(y). We have shown that,
whenever (3.16) holds, we must have x\ast \in NA(y). Equivalently, if x\ast \not \in NA(y), then
we must have d(x\ast ,NA(y)) \geq \alpha . The latter statement implies that A is \alpha -sharp w.r.t
vector x\ast . This completes the proof of (ii) \Rightarrow (i).
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1662 BUI, BURACHIK, NURMINSKI, AND TAM

We now prove (i) \Rightarrow (ii) when the set A is bounded and \alpha -sharp w.r.t. x\ast . Since
the set A is bounded, we can use the characterization of sharpness established in
Proposition 3.12. The latter implies that for all y\ast \in \scrH \setminus \{ 0\} such that FA(x\ast ) \cap 
FA(y\ast ) = \emptyset we must have

\| x\ast  - y\ast \| \geq \alpha .(3.19)

We now show the inclusion in (ii). Take any y\ast \in x\ast +\alpha (\scrB \setminus \scrS ), and assume that y\ast /\in \bigcup 
x\in FA(x\ast )NA(x). This implies that for every x \in FA(x\ast ), we must have y\ast \not \in NA(x).

By Fact 3.4, we deduce that for every x\in FA(x\ast ), we must have x \not \in FA(y\ast ). In other
words, FA(y\ast )\cap FA(x\ast ) = \emptyset . By (i) and Proposition 3.12, we deduce that (3.19) holds.
This contradicts the fact that y\ast \in x\ast + \alpha (\scrB \setminus \scrS ). Therefore, y\ast \in \bigcup x\in FA(x\ast )NA(x),
which completes the proof of (i) \Rightarrow (ii).

Remark 3.21. In [17], a strict complementarity condition is used to ensure that
the SPP solves the linear programming problem minx\in A \langle x\ast , x\rangle , where A \subset \scrH is a
polyhedron, x\ast \in \scrH \setminus \{ 0\scrH \} , and \scrH is a finite dimensional space with dim\scrH = n.
This is established in [17, Theorem 1], whose proof relies on the following two key
conditions:

a. The minimization problem minx\in A \langle x\ast , x\rangle has a unique solution \=x\in A.
b. The normal cone NA(\=x) has nonempty interior and  - x\ast \in intNA(\=x) (see

Figure 3.4(a)).
Condition 2 above implies that there must be at least n linear independent con-
straints that are active at \=x, where n is the dimension of the primal problem. In
fact, let I(\=x) be the set of active constraints at \=x; then, the normal cone of A at \=x is
NA(\=x) = cone[\BbbA \ast e\ast i ]i\in I(\=x). Since intNA(\=x) \not = \emptyset , it follows that dimNA(\=x) = n. There-
fore, | I(\=x)| \geq n, and there are n constraints i1, . . . , in \in I(\=x) such that \BbbA \ast e\ast i1 , . . . ,\BbbA 

\ast e\ast in
are linearly independent. Thus, any linear programming problem in \BbbR n that satis-
fies the strict complementarity condition must have at least n linear independent
constraints. By Definition 2.8, a linear programming problem can only have a finite
number of constraints, and hence the aforementioned requirement may only work for
finite dimensions and will never hold in infinite dimensional case.

By contrast, for the sharpness condition to hold, neither condition 1 nor con-
dition 2 above is required. Instead, Proposition 3.20 shows that sharpness simply
requires  - x\ast to belong to the interior of the union of all normal cones at every opti-
mal solution (see Figure 3.4(b), where condition 1 does not hold). Thus, the sharpness
property requires a much weaker version of condition 2. Furthermore, Proposition 3.14
proves that a polyhedron in an arbitrary Hilbert space is sharp with respect to ev-
ery unit vector; and we will show later in section 4.2 that the sharpness property
is enough to ensure that the minimization problem minx\in A \langle x\ast , x\rangle can be solved by
the SPP.

We next establish the connection between the sharpness property and the sub-
differential operator of the Fenchel conjugate of the indicator function at x\ast . Recall
that, for any proper lsc convex function f , the Fenchel--Young characterization of the
subdifferential is given as follows:

x\ast \in \partial f(x) \Leftarrow \Rightarrow \langle x\ast , x\rangle = f(x) + f\ast (x\ast ) \Leftarrow \Rightarrow x\in \partial f\ast (x\ast ).(3.20)

In particular,

x\ast \in \partial f(x) =\Rightarrow x\ast \in domf\ast and x\in domf.(3.21)
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SINGLE-PROJECTION PROCEDURE 1663

A

−x∗

x̄

NA(x̄)

(a) Strict complementarity condition in [17] holds:
the normal cone NA(x̄) has nonempty interior and 
−x∗ ∈ NA(x̄).

A

−x∗
x̄

NA(x̄)

FA(−x∗)

(b) Strict complementarity condition in [17] fails; 
the set x∈FA(−x∗) NA(x) still has nonempty interior;

and sharpness condition holds.

Fig. 3.4. Comparison between sharpness condition and strict complementarity condition.

Remark 3.22. Given a nonempty convex and closed set A, the Fenchel conjugate
of f(\cdot ) := 1A(\cdot ), denoted by \sigma A(\cdot ), is called the support function of A. Recall that
\partial f = NA and domf = A. Applying (3.20) to this f and using the definitions, we
obtain

f\ast (v) = \sigma A(v) = sup
y\in A

\langle v, y\rangle .(3.22)

Using (3.20) for this f , we obtain

v \in NA(x) \Leftarrow \Rightarrow x\in A and \langle v,x\rangle = \sigma A(v) \Leftarrow \Rightarrow x\in \partial \sigma A(v)(3.23)

\Leftarrow \Rightarrow \partial \sigma A(v) = ArgmaxA \langle v, \cdot \rangle = FA(v),

where we also used (3.22) and Fact 3.4 in the rightmost equivalence. The equivalence
above also shows that D(\partial \sigma A) = R(NA) (see Definition 2.2(a)--(b)). These facts will
be used in the next result.

Proposition 3.23. Consider a nonempty closed convex set A of a Hilbert space
\scrH . Fix x\ast \in \scrS \cap R(NA) and \alpha \in (0,1]. Let \sigma A(\cdot ) be as defined in (3.22). Consider the
following statements:

(i) The set A is \alpha -sharp w.r.t. x\ast .
(ii) \emptyset \not = \partial \sigma A(v) \subset \partial \sigma A(x\ast ) for all v \in x\ast + \alpha (\scrB \setminus \scrS ).

Then, (ii) implies (i). If A is bounded, then (i) implies (ii). In the latter situation,
\partial \sigma A(v) \subset FA(x\ast ) for all v \in x\ast + \alpha (\scrB \setminus \scrS ).

Proof. For simplicity, denote B(\alpha ,x\ast ) := x\ast + \alpha (\scrB \setminus \scrS ). The last statement will
follow directly from (ii) and the equivalence (3.23) for v := x\ast . Indeed, the rightmost
expression in (3.23) with v := x\ast gives FA(x\ast ) = \partial \sigma A(x\ast ). Assuming that (ii) holds,
we will use Proposition 3.20 to show (i). More precisely, we will show that B(\alpha ,x\ast ) \subset \bigcup 

x\in FA(x\ast )NA(x) holds. Then, (i) will follow from the fact that part (ii) implies (i)
in Proposition 3.20. Indeed, taking v \in B(\alpha ,x\ast ), we need to show that there exists
x\in FA(x\ast ) such that v \in NA(x). By (ii), we have \partial \sigma A(v) \not = \emptyset and \partial \sigma A(v) \subset \partial \sigma A(x\ast ).
Hence, we can write x \in \partial \sigma A(v) =\Rightarrow x \in \partial \sigma A(x\ast ) = FA(x\ast ). On the other hand, by
(3.23) we have

x\in \partial \sigma A(v) \Leftarrow \Rightarrow x\in Argmaxy\in A \langle v, y\rangle \Leftarrow \Rightarrow v \in NA(x).

Combining the rightmost parts of the two expressions above gives the following:

If v \in B(\alpha ,x\ast ) and x\in \partial \sigma A(v), then x\in FA(x\ast ) and v \in NA(x).

Therefore, for every v \in B(\alpha ,x\ast ), there exists x \in FA(x\ast ) s.t. v \in NA(x). In other
words, B(\alpha ,x\ast ) \subset \bigcup x\in FA(x\ast )NA(x). Proposition 3.20 (part (ii) implies (i)) now im-
plies that A is \alpha -sharp w.r.t. x\ast . Assuming now that A is bounded, we will prove
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1664 BUI, BURACHIK, NURMINSKI, AND TAM

that (i) implies (ii). Namely, we will use the boundedness and sharpness of A and
Proposition 3.20 to show that (ii) holds. Fix v \in B(\alpha ,x\ast ). The nonemptiness of
\partial \sigma A(v) follows from the fact that the set A is bounded and FA(v) = \partial \sigma A(v) (from
the rightmost expression in (3.23) for v).

To show that \partial \sigma A(v) \subset \partial \sigma A(x\ast ), we need to show that FA(v) \subset FA(x\ast ). Suppose
to the contrary that FA(v) \not \subset FA(x\ast ). Hence, there is y \in FA(v) \setminus FA(x\ast ). Using
Fact 3.4, the latter means that v \in NA(y) and x\ast \not \in NA(y). Since (i) holds, we can
use Proposition 3.12 to write \| x\ast  - v\| \geq d(x\ast ,NA(y)) \geq \alpha , which contradicts the fact
that v \in B(\alpha ,x\ast ). Therefore, we must have that FA(v) \subset FA(x\ast ), and hence (ii)
holds.

Remark 3.24. We say that a proper lsc convex function f : \scrH \rightrightarrows \BbbR \infty is quasi-
polyhedral at \=x \in domf (see [8]) if there exists r > 0 such that \partial f(x) \subset \partial f(\=x) for all
x \in \=x+ r\scrB . Furthermore, from [8, Proposition 3.4], if f is continuous at \=x, then f is
quasi-polyhedral at \=x if and only if f is conical at \=x, meaning that there exist r > 0
and a sublinear function p : \scrH \rightarrow \BbbR \infty such that f(x) = f(\=x) + p(x  - \=x) for every
x\in \=x+ r\scrB . Hence, Proposition 3.23 shows that A is sharp w.r.t. x\ast if and only if the
function \sigma A is quasi-polyhedral at x\ast ; and if \sigma A is continuous at x\ast , then \sigma A is also
conical.

3.4. Metric characterizations. The sharpness property has a strong connec-
tion with regularity-type properties of sets. In particular, we will show in this section
that sharpness with respect to a vector x\ast is equivalent to the subtransversality prop-
erty (also known as metric subregularity; see [14, Definition 3.1] and [13]) between
the set A and its supporting hyperplane w.r.t. x\ast . Recall that, given two convex sets
A,B such that A \cap B \not = \emptyset , the pair \{ A,B\} is subtransversal if there is \alpha \in (0,1) such
that

\alpha d(x,A\cap B) \leq max\{ d(x,A), d(x,B)\} \forall x\in \scrH .

Remark 3.25. Note that the subtransversality property for the pair \{ A,B\} is
equivalent to the property

\alpha d(x,A\cap B) \leq d(x,A) \forall x\in B.(3.24)

Indeed, this follows from the fact that d(x,A) \leq max\{ d(x,A), d(x,B)\} when x \not \in B.
The connection between subtransversality and sharpness arises when we specialize
(3.24) for the pair \{ A,F\} with F := \{ x \in \scrH : \langle x\ast , x\rangle = supy\in A \langle x\ast , y\rangle \} . In this
situation, using the definition of FA(x\ast ), (3.24) becomes

\alpha d(x,FA(x\ast )) \leq d(x,A) \forall x\in F.

The next result shows that subtransversality of \{ A,F\} is equivalent to the sharpness
of A.

Theorem 3.26. Consider a nonempty closed convex set A of a Hilbert space \scrH ,
a vector x\ast \in \scrS such that FA(x\ast ) \not = \emptyset , and \alpha \in (0,1). Define the set F := \{ x \in \scrH :
\langle x\ast , x\rangle = supA \langle x\ast , \cdot \rangle \} . Assume that

\alpha d(x,FA(x\ast )) \leq d(x,A) \forall x\in F,(3.25)

and define \gamma := \alpha 
\sqrt{} 

1  - 1
4\alpha 

2. Then, the set A is \gamma -sharp w.r.t. vector x\ast . Conversely,

define \beta := 2\alpha /(1  - \alpha ). If A is \beta -sharp w.r.t. x\ast , then inequality (3.25) holds.
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SINGLE-PROJECTION PROCEDURE 1665

A
y

xzF

Fig. 3.5. There is x\in F such that y \in PA(x) and y - x\in cone[y\ast ].

Proof. We first assume that inequality (3.25) holds, and we now show that the

set A is \gamma -sharp w.r.t. x\ast , where \gamma := \alpha 
\sqrt{} 

1  - 1
4\alpha 

2. Note that if the set A \setminus FA(x\ast )

is empty, then FA(x\ast ) = A. In this case, inequality (3.25) holds trivially for any
\gamma \in (0,1) in place of \alpha . So it is enough to assume that A \setminus FA(x\ast ) is not empty. By
Fact 3.4, in this case there is y \in A such that x\ast /\in NA(y). Suppose that NA(y) \not = \{ 0\} 
since otherwise it always holds that d(x\ast ,NA(y)) = \| x\ast \| = 1 \geq \alpha for all \alpha \in (0,1). So
we can take y\ast \in \scrS \cap NA(y), i.e., \| y\ast \| = 1. We consider two cases.

Case 1. Suppose that \langle x\ast , y\ast \rangle \leq 0. Then, by Fact 2.11, d(x\ast , cone[y\ast ]) = 1 \geq \alpha .
Case 2. Suppose that \langle x\ast , y\ast \rangle > 0. We first show that there is an x \in F such

that x  - y \in cone[y\ast ] (see Figure 3.5), and so y is a projection of x onto A. This
is equivalent to the existence of t \geq 0 and x \in F such that x  - y = ty\ast , or x =
y + ty\ast \in F . By the definition of F , the claim above is equivalent to stating that the
equation \langle x\ast , y+ ty\ast \rangle = supA \langle x\ast , \cdot \rangle has a solution t \geq 0. Because \langle x\ast , y\ast \rangle > 0, and

y \in A, the constant t :=
supw\in A\langle x\ast ,w\rangle  - \langle x\ast ,y\rangle 

\langle x\ast ,y\ast \rangle is nonnegative and satisfies \langle x\ast , y+ ty\ast \rangle =

supw\in A \langle x\ast ,w\rangle . Therefore, x := y + ty\ast \in F , and y= PA(x). Hence, x - y \in cone[y\ast ] \subset 
NA(y). Taking into account that \| y\ast \| = 1, we have y\ast = x - y

\| x - y\| .

Let z := PFA(x\ast )(x) be the projection of x onto FA(x\ast ). Since z \in A and x - y \in 
NA(y), the following inequality holds:

\langle x - y, z  - y\rangle \leq 0.(3.26)

Additionally, inequality (3.25) implies that \alpha \| x - z\| = \alpha d(x,FA(x\ast )) = \alpha d(x,A\cap F ) \leq 
d(x,A) = \| x - y\| . Combine the expression above with (3.26) to obtain

\| x - z\| 2 = \| x - y\| 2 + \| y - z\| 2 + 2 \langle x - y, y - z\rangle \geq \| x - y\| 2 + \| y - z\| 2

\geq \alpha 2 \| x - z\| 2 + \| y - z\| 2 .

Therefore, (1  - \alpha 2)\| x - z\| 2 \geq \| y - z\| 2 . On the other hand,

\langle x - y,x - z\rangle = 1
2

\Bigl( 
\| y - x\| 2 + \| x - z\| 2  - \| y - z\| 2

\Bigr) 
\geq 1

2

\Bigl( 
\| y - x\| 2 + \| x - z\| 2  - (1  - \alpha 2)\| x - z\| 2

\Bigr) 
= 1

2

\Bigl( 
\alpha 2 \| x - z\| 2 + \| x - y\| 2

\Bigr) 
.

From y\ast = x - y
\| x - y\| , the inequality above, and the Cauchy--Schwarz inequality, we obtain\biggl\langle 
y\ast ,

x - z

\| x - z\| 

\biggr\rangle 
=

\biggl\langle 
x - y

\| x - y\| ,
x - z

\| x - z\| 

\biggr\rangle 
\geq \alpha 2

2

\| x - z\| 
\| x - y\| +

1

2

\| x - y\| 
\| x - z\| \geq \alpha ,

where the last inequality follows from the fact that \eta (t) := \alpha 2 t
2 + 1

2t over \BbbR ++ attains
a minimum at t\ast := 1/\alpha and its minimum value is \eta (t\ast ) = \alpha . On the other hand,

since both x, z \in F , by the definition of F we must have
\Bigl\langle 
x\ast , x - z

\| x - z\| 

\Bigr\rangle 
= 0. Combining

the latter equality with the last inequality yields
\Bigl\langle 
y\ast  - x\ast , x - z

\| x - z\| 

\Bigr\rangle 
\geq \alpha , which, by
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1666 BUI, BURACHIK, NURMINSKI, AND TAM

the definition of dual norm, implies that \| y\ast  - x\ast \| \geq \alpha . The latter inequality and
Fact 2.11 give

d(x\ast , cone[y\ast ])2 = 1 - \langle y\ast , x\ast \rangle 2 = 1 - 
\Biggl( 
\| x\ast \| 2 +\| y\ast \| 2 - \| x\ast  - y\ast \| 2

2

\Biggr) 2

\geq 1 - 
\bigl( 
(2 - \alpha 2)/2

\bigr) 2
= 1/4\alpha 2(4  - \alpha 2),

where we also used the fact that \| x\ast \| = \| y\ast \| = 1. Altogether, in Cases 1 and 2,

we always have d(x\ast , cone[y\ast ]) \geq \alpha 
\sqrt{} 

1  - \alpha 2

4 , and because y\ast \in \scrS \cap NA(y) is chosen
arbitrarily, we have

d(x\ast ,NA(y)) = inf
y\ast \in \scrS \cap NA(y)

d(x\ast , cone[y\ast ]) \geq \alpha 

\sqrt{} 
1  - \alpha 2

4 = \gamma .

Consequently, we have proved that the set A is \gamma -sharp w.r.t. vector x\ast , where
\gamma := \alpha 

\sqrt{} 
1  - \alpha 2/4> 0. To prove the converse implication, we assume by contradiction

that the set A is \beta -sharp w.r.t. x\ast , where \beta := 2\alpha /(1  - \alpha ) and there is \=x \in F such
that \alpha d(\=x,FA(x\ast ))>d(\=x,A). The strict inequality implies that there exists \^\alpha \in (0, \alpha )
such that

\alpha d(\=x,FA(x\ast ))> \^\alpha d(\=x,FA(x\ast ))>d(\=x,A).(3.27)

Consider the closed half-space F \prime := \{ x \in \scrH : \langle x\ast , x\rangle \geq supy\in A \langle x\ast , y\rangle \} . Observe that
F = bdF \prime , and FA(x\ast ) = A \cap F = A \cap F \prime , and for any x \in F , we have NF \prime (x) =
cone[ - x\ast ]. Set \delta := d(\=x,FA(x\ast )). Since \=x \in F , inequality (3.27) implies that \delta > 0
and \=x \not \in A. Let \=y := PA(\=x), so d(\=x,A) = \| \=x - \=y\| > 0. With this notation, inequality
(3.27) becomes

\alpha \delta > \^\alpha \delta > \| \=x - \=y\| .(3.28)

We claim that (3.28) implies that \=y /\in FA(x\ast ). Indeed, if \=y \in FA(x\ast ), then the
definition of \delta yields \delta = d(\=x,FA(x\ast )) \leq \| \=x - \=y\| <\alpha \delta < \delta , a contradiction. Therefore,
our claim holds and \=y /\in FA(x\ast ). Take now \widetilde y := PFA(x\ast )(\=y). By the triangle inequality,

d(\=y,FA(x\ast )) = \| \=y - \widetilde y\| \geq \| \widetilde y - \=x\|  - \| \=x - \=y\| \geq d(\=x,FA(x\ast ))  - \| \=x - \=y\| > (1  - \alpha )\delta ,

where we used the definition of \widetilde y in the first equality, the fact that \widetilde y \in FA(x\ast ) in the
second inequality, and (3.28) in the last inequality. Set \^\delta := (1 - \alpha )\delta . Using the above
expression and the definitions of F \prime and \^\delta , we derive

d(\=y,FA(x\ast )) = d(\=y,A\cap F \prime )> \^\delta .(3.29)

With this notation, \^\alpha \delta = \^\alpha \^\delta 
(1 - \alpha ) and the second inequality in (3.28) rewrites as

(\^\alpha \^\delta )/(1  - \alpha )> \| \=x - \=y\| .(3.30)

Define the function f : \scrH 2 \rightarrow \BbbR \infty as

f(x, y) := \| x - y\| + 1F \prime (x) + 1A(y), (x, y) \in \scrH 2.(3.31)

We now use (3.30) and the Ekeland variational principle, Lemma 2.10, for X := \scrH 2

equipped with the max norm \| (x, y)\| := max\{ \| x\| ,\| y\| \} , and \psi := f . As mentioned
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SINGLE-PROJECTION PROCEDURE 1667

in (2.1), the corresponding dual norm is \| (x, y)\| \ast = \| x\| + \| y\| . Recall that (\=x, \=y) \in 
F \prime \times A, so f(\=x, \=y) = \| \=x - \=y\| . This fact, combined with (3.30) and the definition of f ,
gives inf\scrH \times \scrH f(x, y) \geq 0 > f(\=x, \=y)  - \^\alpha 

1 - \alpha 
\^\delta . Hence, we are in conditions of Ekeland's

variational principle with \varepsilon := \^\alpha \^\delta 
(1 - \alpha ) and \=w := (\=x, \=y). We apply the principle for the

choice \lambda := \^\delta , for which there exists (\^x, \^y) such that the following hold:
(i) \| \^x - \=x\| < \^\delta , \| \^y - \=y\| < \^\delta ;

(ii) f(\^x, \^y) = \| \^x - \^y\| \leq f(\=x, \=y) = \| \=x - \=y\| .
Moreover, our choices imply that \varepsilon /\lambda = \^\alpha /(1  - \alpha ). Altogether, condition (iii) in
Lemma 2.10 with the max norm implies that for every \scrH 2 \ni (x, y) \not = (\^x, \^y) we have

f(\^x, \^y)< f(x, y) + \^\alpha 
(1 - \alpha ) max\{ \| x - \^x\| ,\| y - \^y\| \} =: h(x, y).(3.32)

The above inequality implies that (\^x, \^y) \in F \prime \times A. Consequently, the following state-
ments hold:

(I) By (3.29), we have that d(\=y,A\cap F \prime )> \^\delta . Using also (i) and the fact that
d(\=x,A \cap F \prime ) = \delta > \^\delta , we have \^x, \^y /\in A \cap F \prime . Indeed, if we would have
\^x \in A \cap F \prime , then this fact would imply that \^\delta < d(\=x,A \cap F \prime ) \leq \| \=x - \^x\| ,
contradicting (i). A similar expression, mutatis mutandis, can be used to
show that \^y /\in A\cap F \prime .

(II) Because \^y \in A, \^x \in F \prime , by (I) we must have \^x \not = \^y. The latter fact and (ii)
yield f(\^x, \^y)> 0.

(III) By (II) and Remark 2.5, we write the subdifferential of f as the sum of the
subdifferentials at (\^x, \^y),

\partial f(\^x, \^y) = \partial 1f(\^x, \^y) \times \partial 2f(\^x, \^y) =
\Bigl( 

\^x - \^y
\| \^x - \^y\| +NF \prime (\^x), \^y - \^x

\| \^x - \^y\| +NA(\^y)
\Bigr) 
,

where \partial 1 and \partial 2 stand for the partial subdifferentials w.r.t. the first and
second variables, respectively. Each of the partial subdifferentials exists due
to the continuity of the first term in (3.31).

(IV) By (3.32), it is clear that (\^x, \^y) is the global minimizer of h.
By (IV), we have that 0 \in \partial h(\^x, \^y). To compute the subdifferential of h, we note that
the second term in (3.32) is continuous everywhere. Hence, the subdifferential of h
can be expressed as the sum of the subdifferential of f plus the subdifferential of the
second term in (3.32). To write down the inclusion 0 \in \partial h(\^x, \^y), we use Remarks 2.5

and 2.6 to write 0 \in 
\Bigl( 

\^x - \^y
\| \^x - \^y\| +NF \prime (\^x), \^y - \^x

\| \^x - \^y\| +NA(\^y)
\Bigr) 

+ \^\alpha 
(1 - \alpha )\BbbB 

\ast 
\scrH 2 , where the ball

in the rightmost term is the one induced by the sum norm as given in (2.2). The
inclusion above and the definition of the dual ball give

d
\Bigl( 

\^y - \^x
\| \^x - \^y\| ,NF \prime (\^x)

\Bigr) 
+ d

\Bigl( 
\^x - \^y

\| \^x - \^y\| ,NA(\^y)
\Bigr) 

= d
\Bigl( 
 - 
\Bigl( 

\^x - \^y
\| \^x - \^y\| ,

\^y - \^x
\| \^x - \^y\| 

\Bigr) 
,NF \prime (\^x) \times NA(\^y)

\Bigr) 
\leq \^\alpha /(1  - \alpha ),

where we are using the definition of the sum ball (see (2.2)) in the first equality.
Note also that \^x \in F \prime = \{ x \in \scrH : \langle x\ast , x\rangle \geq supy\in A \langle x\ast , y\rangle \} , so NF \prime (\^x) = cone[ - x\ast ]
if \^x \in F = bdF \prime , and NF \prime (\^x) = \{ 0\} otherwise. This gives NF \prime (\^x) \subset cone[ - x\ast ].
Therefore,

d
\Bigl( 

\^x - \^y
\| \^x - \^y\| ,NA(\^y)

\Bigr) 
+ d

\Bigl( 
\^x - \^y

\| \^x - \^y\| , cone[x\ast ]
\Bigr) 
\leq d

\Bigl( 
\^x - \^y

\| \^x - \^y\| ,NA(\^y)
\Bigr) 

+ d
\Bigl( 

\^y - \^x
\| \^x - \^y\| ,NF \prime (\^x)

\Bigr) 
\leq \^\alpha /(1  - \alpha ).

(3.33)
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1668 BUI, BURACHIK, NURMINSKI, AND TAM

To simplify notation, call \omega 0 := \^x - \^y
\| \^x - \^y\| . By the triangle inequality, we have

d(x\ast ,NA(\^y)) \leq \| x\ast  - \omega 0\| + d (\omega 0,NA(\^y)) .(3.34)

We claim that

d (\omega 0, cone[x\ast ]) \geq 1
2 \| x\ast  - \omega 0\| .(3.35)

Indeed, from Fact 2.11, we have d (\omega 0, cone[x\ast ])
2

= 1 - max (0, \langle x\ast , \omega 0\rangle )2 . We consider
two cases:

1. If \langle x\ast , \omega 0\rangle \leq 0, then d (\omega 0, cone[x\ast ]) = 1, and by the triangle inequality,
\| \omega 0  - x\ast \| \leq \| \omega 0\| + \| x\ast \| = 2 = 2d (\omega 0, cone[x\ast ]), as claimed in (3.35).

2. If \langle x\ast , \omega 0\rangle > 0, then

d (\omega 0, cone[x\ast ])
2

= 1  - \langle x\ast , \omega 0\rangle 2 = 1/2 (1 + \langle x\ast , \omega 0\rangle ) (2  - 2 \langle x\ast , \omega 0\rangle )
> 1/2 (2  - 2 \langle x\ast , \omega 0\rangle ) = 1/2

\Bigl( 
\| x\ast \| 2 + \| \omega 0\| 2  - 2 \langle x\ast , \omega 0\rangle 

\Bigr) 
= 1/2\| \omega 0  - x\ast \| 2 ,

where we used (1 + \langle x\ast , \omega 0\rangle )> 1 in the inequality and the fact that \| x\ast \| = \| \omega 0\| = 1
in the third equality. The above expression yields d (\omega 0, cone[x\ast ]) > 1\surd 

2
\| \omega 0  - x\ast \| >

1
2 \| \omega 0  - x\ast \| . In both cases, we proved that (3.35) holds. From (3.34), we have

d(x\ast ,NA(\^y)) \leq \| x\ast  - \omega 0\| + d (\omega 0,NA(\^y)) \leq 2d (\omega 0, cone[x\ast ]) + d (\omega 0,NA(\^y))

= [d (\omega 0, cone[x\ast ]) + d (\omega 0,NA(\^y))] + d (\omega 0, cone[x\ast ])

\leq \^\alpha /(1  - \alpha ) + \^\alpha /(1  - \alpha ) = 2\^\alpha /(1  - \alpha )< 2\alpha /(1  - \alpha ),

(3.36)

where we used (3.34) in the first inequality and (3.35) in the second one. For the
last inequality, we used (3.33) for the expression between square brackets, and for the
remaining term we used the fact that disregarding the first term in (3.33) implies that
d (\omega 0, cone[x\ast ]) \leq \^\alpha /(1  - \alpha ). From (I), we have \^y /\in A \cap F \prime = A \cap F = FA(x\ast ), and
so by Fact 3.4 it holds that x\ast /\in NA(\^y). By the \beta -sharpness of A w.r.t. x\ast and the
assumption on \beta , we deduce that d(x\ast ,NA(\^y))\geq 2\alpha /(1  - \alpha ) = \beta , contradicting (3.36).
This implies that inequality (3.25) holds.

The following result from [16] is a characterization of subtransversality. We will
use this result to formally express the connection between subtransversality and sharp-
ness.

Lemma 3.27 (see [16, Theorem 3.1], Subtransversality). Suppose X is a normed
linear space, A,B \subset X are nonempty closed convex sets, and A \cap B \not = \emptyset . The pair
\{ A,B\} is subtransversal if and only if there exists a number \alpha \in (0,1) such that

\alpha d(x,A\cap B) \leq d(x,A) \forall x\in B \setminus A.(3.37)

Theorem 3.26 and Lemma 3.27 yield the following result.

Corollary 3.28. Consider a nonempty closed convex set A of a Hilbert space
\scrH , and a vector x\ast \in \scrS . Then, A is sharp w.r.t. x\ast if and only if the pair \{ A,F\} is
subtransversal, where F := \{ x\in \scrH : \langle x\ast , x\rangle = supA \langle x\ast , \cdot \rangle \} .

Proof. Suppose \{ A,F\} is subtransversal. Then, from Lemma 3.27, we have that
(3.37) holds for some \alpha \in (0,1). By Theorem 3.26, the set A is \alpha \prime -sharp w.r.t. x\ast ,
where \alpha \prime := \alpha 

\sqrt{} 
1  - 1/4\alpha 2 \in (0,1). Conversely, assume that A is \alpha -sharp w.r.t. x\ast 

for some \alpha \in (0,1). Then, by Theorem 3.26, we have \alpha \prime d(x,A \cap F ) \leq d(x,A), for all
x\in F , with \alpha \prime := \alpha 

2+\alpha \in (0,1). Note that
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SINGLE-PROJECTION PROCEDURE 1669

2\alpha \prime /(1  - \alpha \prime ) = 2
\alpha /(2 + \alpha )

1  - \alpha /(2 + \alpha )
= 2

\alpha 

2 + \alpha  - \alpha 
= \alpha .

Because \alpha \prime \in (0,1), and from Lemma 3.27, we conclude that the pair \{ A,F\} is
subtransversal.

4. Optimization problems under sharpness condition. We consider now
constrained convex problems of the following type:

min
x\in A

f(x),(CP)

where f : \scrH \rightarrow \BbbR \infty is a proper lsc convex function and A is a nonempty closed
convex set. We provide in this section sufficient conditions under which the SPP
can solve problem (CP). As expected, the sharpness condition plays a crucial role
in our analysis. Namely, under the sharpness assumption, if (i) b /\in A, and (ii) the
difference (infx\in A f)  - f(b) is sufficiently large, then PA(b) solves problem (CP). In
such a situation, instead of solving problem (CP), we can solve the (hopefully) simpler
problem of finding PA(b). Before establishing the main results of this section, we first
find an upper bound on the distance between a point and a set using normal cones.

4.1. Upper bound on the distance. Given a set A and a point b /\in A, how
can we estimate the distance d(b,A)? We address this question next; our analysis
holds in a general Banach space (not necessarily Hilbert). A main tool in our proof
is again the Ekeland variational principle. In the result below, we denote by B[\rho , b]
the closed ball of radius \rho and center b and by B(\rho , b) the corresponding open ball .

Theorem 4.1. Consider a Banach space X, a nonempty closed convex set A,
points a \in A, b /\in A with \rho := \| a - b\| , and \varepsilon > 0. Then, d(b,A) \leq \| a - b\|  - \varepsilon if there
is \delta > 0 such that

inf \{ d (x\ast ,NA(x)) : \| x\ast \| = 1, \langle x\ast , b - x\rangle = \| b - x\| , x\in B[\rho , b] \cap B(\delta , a) \cap A\} \geq \varepsilon /\delta .

(4.1)

Proof. Assume (4.1) holds for some \varepsilon , \delta > 0. For contradictory purposes, assume
also that \varepsilon is such that d(b,A) > \| a - b\|  - \varepsilon . Consider the function f : X \rightarrow \BbbR \infty 
defined by f(y) := \| y - b\| + 1A(y) = \varphi b(y) + 1A(y). Here, \varphi b(y) := \| y  - b\| as in
Remark 2.5. Then, the assumption on \varepsilon implies that f(a) = \| a - b\| < infA f + \varepsilon .
Take 0 < \varepsilon \prime < \varepsilon , such that infA f + \varepsilon > infA f + \varepsilon \prime > f(a). By Ekeland's variational
principle (Lemma 2.10) applied to \=w := a, \psi := f , \varepsilon := \varepsilon \prime , and \lambda := \delta , there exists a
vector \^x\in A\cap B\delta (a) such that

f(\^x) \leq f(a),(4.2)

f(\^x) \leq f(y) + \varepsilon \prime /\delta \| y - \^x\| \forall y \in A.(4.3)

Due to (4.2) and a\in A, we have that \^x\in A and \| \^x - b\| \leq \| a - b\| = \rho , or \^x\in A\cap B[\rho , b].
Define h(y) := \varepsilon \prime 

\delta \| y - \^x\| . By (4.3), it follows that \^x is a global minimizer of the
sum function f + h, and hence the definition of subdifferential yields the inclusion
0 \in \partial (f + h)(\^x) = \partial f(\^x) + \partial h(\^x). Note that the subdifferential sum formula can be
used to differentiate (f + h) because h is continuous everywhere. By Remark 2.5,
\partial h(\^x) = \varepsilon \prime 

\delta \BbbB 
\ast , and we obtain 0 \in \partial \varphi b(\^x) + \partial 1A(\^x) + \partial h(\^x) = \partial \varphi b(\^x) +NA(\^x) + \varepsilon \prime 

\delta \BbbB 
\ast .

Therefore,

[\partial \varphi b(\^x) +NA(\^x)] \cap ( \varepsilon \prime 

\delta \BbbB 
\ast ) \not = \emptyset .(4.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

34
.7

.5
7.

23
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1670 BUI, BURACHIK, NURMINSKI, AND TAM

Furthermore, since \^x \in A, we have that \varphi b(\^x) = \| \^x - b\| \geq d(b,A)> 0. By [21, Corol-
lary 2.4.16] and the chain rule, we have \partial \varphi b(\^x) = \{ x\ast : \langle x\ast , \^x - b\rangle = \| \^x - b\| , \| x\ast \| = 1\} .
Altogether, by (4.4) there is x\ast \in ( - \partial \varphi b(\^x)) such that d (x\ast ,NA(\^x)) \leq \varepsilon \prime 

\delta < \varepsilon 
\delta ,

where the first inequality holds because, by (4.4), there exists u \in NA(\^x) such that
(u  - x\ast ) \in \varepsilon \prime 

\delta \BbbB 
\ast , and the last one holds because \varepsilon \prime < \varepsilon . Noting that (4.1) holds,

and using the fact that x\ast \in ( - \partial \varphi b(\^x)), i.e., \| x\ast \| = 1, \langle x\ast , b - \^x\rangle = \| b - \^x\| , and
\^x\in B[\rho , b] \cap B(\delta , a) \cap A, we can write

\varepsilon /\delta \leq inf
\Bigl\{ 
d (x\ast ,NA(x)) : \| x\ast \| = 1, \langle x\ast , b - x\rangle = \| b - x\| ,

x\in B[\rho , b] \cap B(\delta , a) \cap A
\Bigr\} 
< \varepsilon /\delta ,

which is a contradiction.

When the space X is Hilbert, Theorem 4.1 can be simplified as follows.

Corollary 4.2. Suppose A is a closed convex set of a Hilbert space, a\in A, b /\in A
with \rho := \| a - b\| , and \varepsilon > 0. If there is \delta > 0 such that the following inequality holds,

inf
\Bigl\{ 
d
\Bigl( 

b - x
\| b - x\| ,NA(x)

\Bigr) 
: x\in B[\rho , b] \cap B(\delta , a) \cap A

\Bigr\} 
\geq \varepsilon /\delta ,(4.5)

then d(b,A) \leq \| a - b\|  - \varepsilon .

Proof. In a Hilbert space, the element x\ast we find in the proof of Theorem 4.1 can
be taken as x\ast := (\^x - b)/\| \^x - b\| , so the expression in (4.1) becomes (4.5).

Remark 4.3. The aim of Corollary 4.2 is to establish a sufficient condition for a
being ``far enough"" from being a projection of b onto A. Note that a = PA(b) if and
only if b - a\in NA(a). Equivalently, d

\bigl( 
b - a

\| b - a\| ,NA(a)
\bigr) 

= 0. Hence, to ensure we are far

from the latter situation, we require (4.5) to hold, not merely at a, but at every point
x\in B[\rho , b]\cap B(\delta , a)\cap A. We quantify this property by showing that if (4.5) holds, then
we must have \| a - b\| > d(b,A) + \varepsilon . The latter, in turn, means that the difference
\| a - b\|  - d(b,A) is bounded from below by a constant \varepsilon . Note also that the opposite
inequality to (4.5) is the optimality condition for \varepsilon -projections, where the later define
points in A that are within distance d(b,A) + \varepsilon from b. Geometrically, (4.5) ensures
that the cosine of the angle between b - x and a vector in NA(x) is always bigger than
a positive constant \varepsilon 

\delta > 0, where x \in B[\rho , b] \cap B(\delta , a) \cap A. Figure 4.1 illustrates an
example on estimating the distance from a point to a set.

Since the projection of b onto A is an element a\in A such that d(b,A) = \| a - b\| , an
\varepsilon -projection of b onto A can be understood as an element a\prime \in A such that d(b,A)>
\| a\prime  - b\|  - \varepsilon . This motivates the following generalization of Theorem 4.1 to the case
of an \varepsilon -projection.

b

a

x
NA(x)

A
\delta 

\gamma 

Fig. 4.1. The distance from b to the set A is bounded above by \| b - a\|  - \delta \alpha (so \varepsilon = \delta \alpha ). Here,
\gamma is the smallest angle between vectors x - b and normal cone NA(x) for x \in A, \alpha = cos(\gamma ), and \delta 
is the size of the neighborhood around a; i.e., we are taking x \in A \cap B\delta (a). Note here that we only
consider x\in A\cap B\delta (a) such that \| x - b\| \leq \| b - a\| .
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SINGLE-PROJECTION PROCEDURE 1671

Corollary 4.4. Consider a Banach space X, a nonempty closed convex set A,
b /\in A, a\in A, \rho = \| a - b\| , and \varepsilon \geq 0. For any given \delta > 0, define the set

C(\delta ) := \{ (x,x\ast ) \in X\times X\ast : x\in B[\rho , b] \cap B(\delta , a) \cap A and \| x\ast \| =1, \langle x\ast , b - x\rangle =\| b - x\| \} .

Assume that a is an \varepsilon -projection of b, in the sense that \| a - b\| < d(b,A) + \varepsilon . Then,
for every \delta > 0, there exists (x0, x

\ast 
0) \in C(\delta ) such that d(x\ast 0,NA(x0))< \varepsilon /\delta .

Proof. Assume that the conclusion of the corollary is not true. Namely, assume
that there is \delta > 0 such that for all (x,x\ast ) \in C(\delta ) we have d(x\ast ,NA(x)) \geq \varepsilon 

\delta . Hence,
inf(x,x\ast )\in C(\delta ) d(x\ast ,NA(x)) \geq \varepsilon 

\delta , which, by the definition of C(\delta ), is exactly (4.1). By
Theorem 4.1, we must have \| a - b\| \geq d(b,A) + \varepsilon , contradicting the fact that a is an
\varepsilon -projection of b.

4.2. Solving problems with SPP: The case with a linear objective. We
start this section by considering the following minimization problem with a linear
objective:

min
x\in A

\langle x\ast , x\rangle ,(P)

where x\ast \in \scrS and A is a closed convex set. Denote by \BbbS the set of solutions of
problem (P). We assume that \BbbS \not = \emptyset . The optimality conditions for problem (P) imply
that \BbbS = \{ x : 0 \in x\ast +NA(x)\} . The following theorem shows that problem (P) can
be solved by projecting an infeasible point onto the feasible region A if the set A is
sharp. We will use the following fact, which is a consequence of Fact 2.11. For any
p, q nonzero vectors, we have

d(p, cone[q]) = d(q, cone[p]).(4.6)

Theorem 4.5. Consider a nonempty closed convex set A of a Hilbert space \scrH and
a vector x\ast \in \scrS . Suppose that A is \alpha -sharp w.r.t.  - x\ast for some \alpha \in (0,1]. Suppose
also that v \in \scrH satisfies following conditions:

1. \langle x\ast , v\rangle < infx\in A \langle x\ast , x\rangle ;
2. (1  - (\alpha /2)2)d(v,A)< infx\in A \langle x\ast , x - v\rangle .

Then, the projection of v onto A is a solution of problem (P).

Proof. Suppose to the contrary that there exists v \in \scrH satisfying conditions 1
and 2 such that the projection of v onto A is not a solution of (P). Since A is \alpha -sharp
w.r.t.  - x\ast , we have

inf
x\in A, - x\ast /\in NA(x)

d( - x\ast ,NA(x)) \geq \alpha .(4.7)

Take y= PA(v); then v - y \in NA(y). Because y is not a solution of the convex problem
(P), we must have 0 /\in x\ast +NA(y). From (4.7) and the fact that  - x\ast /\in NA(y), we have
d( - x\ast ,NA(y)) \geq \alpha > 0. Combining this inequality with the inclusion v  - y \in NA(y)
yields

d

\biggl( 
y - v

\| y - v\| , cone[x\ast ]

\biggr) 
= d(x\ast , cone[y - v]) = d( - x\ast , cone[v - y])(4.8)

\geq d( - x\ast ,NA(y)) \geq \alpha ,

where we also used (4.6) in the first equality. Consider the closed half space F :=
\{ x\in \scrH : \langle x\ast , x - v\rangle \leq 0\} . From condition 1, \langle x\ast , v\rangle < infx\in A \langle x\ast , x\rangle , and hence the
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1672 BUI, BURACHIK, NURMINSKI, AND TAM

sets A and F are disjoint, i.e., A \cap F = \emptyset . Now, we are going to apply Corollary 4.2.
Namely, we will show that (4.5) holds with lower bound \alpha /2. Indeed, we apply this
corollary to the set F , v \in F , and y /\in F to estimate the distance d(y,F ) relative to
\| v - y\| . Setting \delta := (\alpha /2)\| v - y\| , and \rho := \| v - y\| , we claim that

inf
\Bigl\{ 
d
\Bigl( 

y - z
\| y - z\| ,NF (z)

\Bigr) 
: z \in F \cap B(\delta , v) \cap B[\rho , y]

\Bigr\} 
\geq \alpha /2.(4.9)

Indeed, take z \in F \cap B(\delta , v) \cap B[\rho , y]. We consider two cases.

Case 1. If z \in intF , then NF (z) = \{ 0\} , and hence d
\Bigl( 

y - z
\| y - z\| ,NF (z)

\Bigr) 
= 1.

Case 2. If z /\in intF , then the definition of F implies that NF (z) = cone[x\ast ]. Since
z \in B[\rho , y], we use (4.8) to write

d

\biggl( 
y - z

\| y - z\| ,NF (z)

\biggr) 
= d

\biggl( 
y - z

\| y - z\| , cone[x\ast ]

\biggr) 
= inf

t\geq 0

\bigm\| \bigm\| \bigm\| \bigm\| y - z

\| y - z\|  - tx\ast 
\bigm\| \bigm\| \bigm\| \bigm\| =

\| y - v\| 
\| y - z\| d

\biggl( 
y - z

\| y - v\| , cone[x\ast ]

\biggr) 
\geq d

\biggl( 
y - z

\| y - v\| , cone[x\ast ]

\biggr) 
= d

\biggl( 
y - v

\| y - v\| +
v - z

\| y - v\| , cone[x\ast ]

\biggr) 
= inf

t\geq 0

\bigm\| \bigm\| \bigm\| \bigm\| y - v
\| y - v\| +

v - z
\| y - v\|  - tx

\ast 
\bigm\| \bigm\| \bigm\| \bigm\| \geq inf

t\geq 0

\bigm\| \bigm\| \bigm\| \bigm\| y - v
\| y - v\|  - tx

\ast 
\bigm\| \bigm\| \bigm\| \bigm\|  - \| v - z\| 

\| y - v\| 

= d

\biggl( 
y - v

\| y - v\| , cone[x\ast ]

\biggr) 
 - \| v - z\| 

\| y - v\| \geq \alpha  - \alpha /2 = \alpha /2,

where in the fourth equality we used the change of variables t\rightarrow \~t := t\| y - z\| /\| y - v\| ,
and we used the fact that \| y  - z\| \leq \rho = \| y  - v\| in the first inequality. As for the
last inequality, we use (4.8) for obtaining the lower bound of the first term. For the
second term, recall that z \in B(\delta , v), so \| v - z\| < \delta = (\alpha /2)\| v - y\| . These establish
the last inequality. Hence, our claim (4.9) holds. By Theorem 4.1, we have

d(y,F ) \leq \| y - v\|  - (\alpha /2)\delta = \| y - v\|  - (\alpha /2)2 \| y - v\| = (1  - (\alpha /2)2)\| y - v\| .
(4.10)

To arrive at a contradiction, we will use condition 2. Suppose w \in F is the pro-
jection of y onto F ; then, y  - w \in NF (w). By the definition of F , we know that
NF (w) = cone[x\ast ]. Hence, x\ast = (y  - w)/\| y  - w\| and therefore d(y,F ) = \| y - w\| =
\langle x\ast , y - w\rangle . Taking into account that x\ast \in NF (v)\cap NF (w), we obtain \langle x\ast ,w - v\rangle \leq 0,
and \langle x\ast , v - w\rangle \leq 0, and hence \langle x\ast ,w - v\rangle = 0. From the previous equality d(y,F ) =
\langle x\ast , y - w\rangle , we have \langle x\ast , y - v\rangle = \langle x\ast , y - w\rangle + \langle x\ast ,w - v\rangle = \langle x\ast , y - w\rangle = d(y,F ). So,
the following estimation holds:

inf
x\in A

\langle x\ast , x - v\rangle \leq \langle x\ast , y - v\rangle = d(y,F ) \leq (1  - (\alpha /2)2)\| y - v\| = (1  - (\alpha /2)2)d(v,A),

where we also used (4.10) in the second inequality and the definition of y in the last
equality. The above expression contradicts condition 2. Therefore, we must have that
PA(v) solves problem (P) .

As a consequence of Theorem 4.5, if A is \alpha -sharp w.r.t. a vector  - x\ast , problem
(P) can be solved by projecting onto A an infeasible point v s.t. conditions 1 and 2
hold (see Figure 4.2). Hence, it is important to be able to construct such vectors. It
is clear that condition 1 in Theorem 4.5 follows from condition 2. The next lemma
shows that, once we have a vector verifying condition 1, we can always construct a
translation of the vector that verifies condition 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

34
.7

.5
7.

23
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



SINGLE-PROJECTION PROCEDURE 1673

A

 - x\ast 

v

PA(v)

Fig. 4.2. Illustration of Theorem 4.5: the set A is sharp w.r.t vector  - x\ast . Vector v satisfies
conditions 1 and 2, and hence the projection PA(v) of v onto the set A is the solution of the
minimization problem infA\langle x\ast , \cdot \rangle .

Lemma 4.6. With the notation of Theorem 4.5, assume that v \in \scrH verifies con-
dition 1 and fix \alpha \in (0,1]. Assume that condition 2 with parameter \alpha does not hold
for v. Define

\theta (v) := inf
x\in A

\langle x\ast , x - v\rangle , and \mu 0 :=
(1  - (\alpha /2)2)d(v,A)  - \theta (v)

(\alpha /2)2
.(4.11)

Then, \theta (v)> 0 and \mu 0 \geq 0. Moreover, if \mu > \mu 0, then u := v - \mu x\ast verifies conditions
1 and 2 from Theorem 4.5.

Proof. The fact that \theta (v)> 0 is equivalent to the validity of condition 1 for v, so
it holds by assumption. The fact that \mu 0 \geq 0 is equivalent to the assumption that v
fails to verify condition 2 for the given \alpha . Altogether, we have that

0< \theta (v) \leq (1  - (\alpha /2)2)d(v,A).(4.12)

We proceed to prove that conditions 1 and 2 hold for u if \mu > \mu 0. Use the definition
of \theta (v) to write, for all x \in A, \langle x\ast , x - u\rangle = \langle x\ast , x - (v - \mu x\ast )\rangle = \langle x\ast , x - v\rangle + \mu \geq 
\theta (v) + \mu > \mu > 0, where we used the definition of u in the first equality and the fact
that x\ast \in \scrS in the second one. Therefore, infx\in A \langle x\ast , x - u\rangle \geq \mu > 0 and condition 1
holds for u. The above expression also yields

\langle x\ast , x - u\rangle \geq \theta (v) + \mu > 0(4.13)

for all x\in A. Let us check now that condition 2 holds for u. Using again the fact that
x\ast \in \scrS gives

d(u,A) = d(v - \mu x\ast ,A) = inf
x\in A

\| v - \mu x\ast  - x\| \leq inf
x\in A

\| v - x\| + \mu \| x\ast \| = d(v,A) + \mu .

(4.14)

Using the definition of \mu 0, we rewrite the inequality \mu > \mu 0 as

d(v,A)<
(\alpha /2)2\mu + \theta (v)

(1  - (\alpha /2)2)
.(4.15)

Using (4.15) in (4.14) yields d(u,A) \leq d(v,A) + \mu < (\alpha /2)2\mu +\theta (v)
1 - (\alpha /2)2 + \mu = \mu +\theta (v)

1 - (\alpha /2)2 \leq 
\langle x\ast ,x - u\rangle 
1 - (\alpha /2)2 , where we also used (4.13) in the last inequality. Since the above inequality
holds for every x\in A, we deduce that condition 2 holds for u.

The argument in Lemma 4.6 is the main idea behind the next proposition. Namely,
if a vector v \in \scrH satisfies condition 1 and not condition 2, then we translate v by a
large enough multiple of  - x\ast , so that condition 2 holds for the translated vector.
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1674 BUI, BURACHIK, NURMINSKI, AND TAM

Proposition 4.7. Consider a nonempty closed convex set A of a Hilbert space
\scrH and vector x\ast \in \scrS such that the set A is \alpha -sharp w.r.t.  - x\ast for some \alpha \in (0,1].
Consider v \in \scrH such that \langle x\ast , v\rangle <minx\in A \langle x\ast , x\rangle . Then, the projection of u := v - \mu x\ast 
onto A, where \mu \geq 4 - \alpha 2

\alpha 2 d(v,A), is a solution of (P).

Proof. The proof follows by noting that 4 - \alpha 2

\alpha 2 d(v,A) = 1 - (\alpha /2)2

(\alpha /2)2 d(v,A)>\mu 0, with
\mu 0 as in Lemma 4.6. Using the lemma, we see that u verifies conditions 1 and 2 in
Theorem 4.5. Therefore, the claim follows directly from the theorem.

We illustrate Proposition 4.7 with the following two examples.

Example 4.8. Consider problem (P) with \scrH = \BbbR 2, x\ast = (0,1), and A := \{ x \in 
\BbbR 2 : \BbbA x \leq b\} , where \BbbA =

\bigl[ 
1  - 1
 - 1  - 1

\bigr] 
and b = (0,0). Our first task is to determine

the modulus of sharpness of A. It is easy to check that, for every x \in bdA, we have
NA(x) = cone[( - 1, - 1)] =: K1 if x1 < 0, and NA(x) = cone[(1, - 1)] =: K2 if x1 > 0,
and NA(x) = cone[( - 1, - 1), (1, - 1)] if x1 = 0, which can be graphically verified from
Figure 4.3. Note that we have  - x\ast \not \in NA(x) if and only if x1 \not = 0. Using (4.7) in
Theorem 4.5, we have

inf
x\in A

 - x\ast /\in NA(x)

d( - x\ast ,NA(x)) = min\{ d( - x\ast ,K1), d( - x\ast ,K2)\} =
\surd 

2/2 = 2(
\surd 

2/4).

Hence, (4.7) holds with \alpha :=
\surd 

2/2. Consequently, x0 will solve (P) if it verifies
conditions 1 and 2 in Theorem 4.5. If only condition 1 holds, then we can use Propo-
sition 4.7 and find \mu 0 s.t. PA(x0  - \mu x\ast ) solves the LP for \mu > \mu 0. For instance, take
x0 := ( - 1, - 1/2). It is easy to check that x0 verifies condition 1 in Theorem 4.5, but
not condition 2, and that d(x0,A) = 3

\surd 
2/4. With the notation of Proposition 4.7

and \alpha =
\surd 

2/4, we need to take \mu such that \mu > d(x0,A)(4  - \alpha 2)/\alpha 2 = 21
\surd 

2/4.
Take \mu = 10 > 21

\surd 
2/4. So u := x0  - \mu x\ast = ( - 1, ( - 1/2)  - 10) = ( - 1, - 21/2)

with PA(u) = (0,0), the solution of (P). An illustration of this example is shown in
Figure 4.3.

Example 4.9. Consider problem (P) with \scrH = \BbbR 3, x\ast = (0,1/
\surd 

2,1/
\surd 

2), and
A := \{ x \in \BbbR 2 : \BbbA x \leq b\} , where \BbbA =  - I and b = (0,0,0). Namely, A = \BbbR 3

+. The
solution of (P) is the set \BbbR + \times \{ 0\} \times \{ 0\} , and zero is its optimal value. Again,
we first determine the modulus of sharpness of A. It can be checked that the
only cases in which  - x\ast \in NA(x) for x \in bdA is when x1 \geq 0 and x2 = x3 =
0. Hence, we need to compute d( - x\ast ,NA(x)) for x in the following set: T :=

A = \{ x : \BbbA x \leq b\} 

 - x\ast 
x0

F = \{ x : \langle x\ast , x\rangle \leq M\} 

A = \{ x : \BbbA x \leq b\} 

 - x\ast 

NA(\=x)

x0

PA(x0)

x0  - \mu x\ast 

\=x = PA(x0  - \mu x\ast )

Fig. 4.3. Illustration for Example 4.8: (left) the disjoint sets A and F and (right) the projection
of the point x0  - \mu x\ast onto A is the unique solution, \=x, of the LP.
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SINGLE-PROJECTION PROCEDURE 1675

\{ x \in bdA : x1 \geq 0 and x2, x3 are not simultaneously zero\} . It can be checked that
infx\in T d( - x\ast ,NA(x)) = 1/

\surd 
2, so (4.7) holds with \alpha := 1/

\surd 
2. Take x0 := (1, - 1,0);

then d(x0,A) = 1, and x0 verifies condition 1 in Theorem 4.5 but not condition 2. With
the notation of Proposition 4.7, we need \mu such that \mu > (4  - \alpha 2)/\alpha 2d(x0,A) = 7.
Take \mu = 7

\surd 
2 so u := x0  - \mu x\ast = (1, - 8, - 7) with PA(u) = (1,0,0) a solution of (P).

4.3. SPP for a general case. We extend next Theorem 4.5 to a problem where
the objective function is an arbitrary convex lsc function f : \scrH \rightarrow \BbbR \infty . Namely, we
consider the convex problem

min
x\in A

f(x),(CP)

where A is a closed and convex set. For this problem, we will assume that f and A
are such that \partial (f + 1A) = \partial f +NA over domf \cap A. The latter is true, for instance,
when some standard constraint qualification holds (see [2, Corollary 16.38]), e.g., when
intA \cap domf \not = \emptyset or int (domf) \cap A \not = \emptyset . The function fA := (f + 1A) will have a
crucial role in the next result. Note that

epifA = \{ (x, t) \in A\times \BbbR : f(x) \leq t\} = (A\times \BbbR ) \cap epif.(4.16)

By imposing a sharpness condition on the set epifA w.r.t. the vector (0\scrH , - 1), we
can recover a solution of problem (CP) by using Theorem 4.5 in the extended space
\scrH \times \BbbR .

Theorem 4.10. Suppose the convex problem (CP) has solutions with optimal
value M := infx\in A f(x) and a nonempty set of optimal solutions denoted by \BbbS . Assume
that the following conditions hold:

(i) The set epifA =: \~A given in (4.16) is \alpha -sharp w.r.t z\ast := (0\scrH , - 1) for \alpha \in 
(0,1).

(ii) Let (v, t) \in \scrH \times \BbbR be such that
(a) t <M , and
(b) (1  - (\alpha /2)2)d((v, t), \~A)< (M  - t).

In this situation, consider P \~A(v, t) = (w,f(w)). Then, w \in \BbbS , and hence f(w) =M .

Proof. With the notation of (i), problem (CP) is equivalent to the following
problem:

min
(x,s)\in \~A

s,(EP)

which has the same optimal value as (CP) and a linear objective \psi : \scrH \times \BbbR \rightarrow \BbbR 
defined as \psi (x, s) := s = \langle (0\scrH ,1), (x, s)\rangle . Note that (EP) is an optimization problem
with a linear objective and by (i), its constraint set is 2\alpha sharp w.r.t. z\ast := (0\scrH , - 1).
Take \~v := (v, t) \in \scrH \times \BbbR verifying assumptions (a)--(b). We claim that this implies
that conditions 1 and 2 in Theorem 4.5 hold, with x\ast := (0\scrH ,1), and A := \~A. Indeed,
condition (a) rewrites as t= \langle (0,1), (v, t)\rangle <M = infA f(x) = inf(x,s)\in \~A \langle (0,1), (x, s)\rangle ,
which is condition 1 in Theorem 4.5 for \~v := (v, t) and x\ast := (0\scrH ,1). Condition
2 in Theorem 4.5 follows directly from (b) and the definitions. Therefore, we are
in conditions of Theorem 4.5, and P \~A(v, t) solves (EP). By [2, Proposition 29.35],

P \~A(v, t) = (w,f(w)), where w \in A is the unique solution of the inclusion
v - w

(f(w)  - t)
\in 

\partial f(w). Note that t < M \leq f(w) so (f(w)  - t) > 0. Since P \~A(v, t) = (w,f(w))
solves (EP), this means that f(w) =M and since w \in A we must have w \in \BbbS .
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1676 BUI, BURACHIK, NURMINSKI, AND TAM

Remark 4.11. We give in Proposition 3.15 a necessary and sufficient condition for
assumption (i) in Theorem 4.10 to hold for fA.

Remark 4.12. Let A be a closed and convex set, and assume that fA := f + 1A

is polyhedral. By Corollary 3.18, we know that there exists \alpha < 1 such that property
(3.9) holds for \beta := \alpha /

\surd 
1  - \alpha 2. The latter fact, combined with Proposition 3.15,

imply that epifA =: \~A is \alpha -sharp w.r.t. (0\scrH , - 1). Hence, we are in the situation of
Theorem 4.10. Therefore, if (v, t) is such that t < M and

\bigl( 
1  - \alpha 2/4

\bigr) 
d((v, t), \~A) <

M  - t, then P \~A(v, t) = (\=x, f(\=x)) is such that \=x solves (CP).

The following result considers problem (CP) on its own and establishes a sharp-
ness condition under which a projection onto A solves (CP).

Theorem 4.13. Suppose that the convex problem (CP) has a solution, and denote
by \BbbS the set of optimal solutions, and \alpha \in (0,1). Assume that the following conditions
hold:

(i) With the convention inf \emptyset = +\infty and 0
\| 0\| = 0,

inf
x\in A\setminus \BbbS ,x\ast \in \partial f(y),y\in \BbbS 

d ( - x\ast /\| x\ast \| ,NA(x)) \geq \alpha > 0.(4.17)

(ii) There is v \in \scrH such that the following hold:
(a) f(v)< infx\in A f(x); and
(b) (1  - (\alpha /2)2)d(v,A)< infx\in A f(x)  - f(v).

In this situation, the projection of v onto A solves problem (CP).

Proof. Our assumption on problem (CP) implies that, at a solution \=x \in \BbbS , there
exists x\ast \in \partial f(\=x) such that  - x\ast \in NA(\=x). By (i), we know that x\ast \not = 0; otherwise, the
left-hand side of (4.17) equals 0. Letting M := infA f , we consider the sublevel set of
f at value M : F := \{ x\in \scrH : f(x) \leq M\} . Then, it is clear that A \cap F = \BbbS , the set of
optimal solutions of problem (CP). From x\ast \in ( - NA(\=x)) \cap \partial f(\=x), we have

\langle x\ast , x - \=x\rangle \geq 0 \forall x\in A and 0 \geq f(x\prime )  - M = f(x\prime )  - f(\=x) \geq \langle x\ast , x\prime  - \=x\rangle \forall x\prime \in F,
(4.18)

where the first inequality in the rightmost expression follows because x\prime \in F and
\=x\in \BbbS . In other words, x\ast separates the (closed and convex) sets A and F . Therefore,
A \cap F = \BbbS \subset \{ x : \langle x\ast , x\rangle = \langle x\ast , \=x\rangle \} . In particular, this implies that \langle x\ast , z  - \=x\rangle = 0
for all z \in \BbbS . Take now any y \in A, z \in \BbbS . Use the left-hand side of (4.18) and
\langle x\ast , z  - \=x\rangle = 0 to deduce that \langle  - x\ast , y - z\rangle = \langle  - x\ast , y - \=x\rangle + \langle  - x\ast , \=x - z\rangle \leq 0, and so
 - x\ast \in NA(z), for all z \in \BbbS . The inclusion above implies that \langle x\ast , z\rangle \leq \langle x\ast , y\rangle for any
y \in A, z \in \BbbS . In other words, \BbbS \subset argminA \langle x\ast , \cdot \rangle . Namely,

\BbbS \subset \{ z \in A : \langle x\ast , z\rangle \leq \langle x\ast , y\rangle \forall y \in A\} 
= \{ z \in A : \langle  - x\ast , z\rangle \geq \langle  - x\ast , y\rangle \forall y \in A\} = FA( - x\ast ),

and therefore A \setminus \BbbS \supset A \setminus FA( - x\ast ). Combining the latter inclusion with inequality
(4.17) yields

inf
x\in A\setminus FA( - x\ast )

d ( - x\ast /\| x\ast \| ,NA(x)) \geq \alpha .(4.19)

The expression above means that A is \alpha -sharp w.r.t. vector  - x\ast /\| x\ast \| . Take v /\in A
such that f(v) < M and d(v,A) < M - f(v)

1 - (\alpha /2)2 . Namely, v verifies condition (ii). By

construction, v \in F , and using this fact in the rightmost side of (4.18) yields \langle x\ast , v\rangle \leq 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
24

 to
 1

34
.7

.5
7.

23
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



SINGLE-PROJECTION PROCEDURE 1677

\langle x\ast , \=x\rangle + (f(v)  - M)< \langle x\ast , \=x\rangle \leq infx\in A \langle x\ast , x\rangle . Hence, \langle x\ast , v\rangle < infx\in A \langle x\ast , x\rangle , and so
v verifies condition 1 in Theorem 4.5. We also have that x\ast \in \partial f(\=x), so

\langle x\ast , \=x\rangle  - \langle x\ast , v\rangle \geq f(\=x)  - f(v) =M  - f(v)> 0,(4.20)

where we also used the fact that f(\=x) =M . By the definition of v, we have

d(v,A)<
M  - f(v)

1  - (\alpha /2)2
\leq \langle x\ast , \=x\rangle  - \langle x\ast , v\rangle 

1  - (\alpha /2)2
=

infx\in A \langle x\ast , x\rangle  - \langle x\ast , v\rangle 
1  - (\alpha /2)2

,

where we used (4.20) in the second inequality and the fact that \=x\in \BbbS \subset argminA \langle x\ast , \cdot \rangle 
in the equality. The expression above implies that v verifies condition 2 in Theo-
rem 4.5. Since v satisfies both conditions in the theorem, we deduce that PA(v) is a
solution of infx\in A \langle x\ast , x\rangle . Equivalently, PA(v) \in FA( - x\ast ).

To complete the proof, we will show that \BbbS = FA( - x\ast ). This will establish
that PA(v) \in \BbbS , as wanted. We already know that \BbbS \subset FA( - x\ast ), so it is enough
to show that \BbbS \supset FA( - x\ast ). Indeed, assume that there is z \in A \setminus \BbbS such that
z \in FA( - x\ast ). The fact that z \in FA( - x\ast ) means that \langle x\ast , z\rangle = minx\in A \langle x\ast , x\rangle , or
equivalently,  - x\ast \in NA(z). The latter inclusion gives 0 = d( - x\ast /\| x\ast \| ,NA(z)) \geq 
inf x\in A\setminus \BbbS 

x\ast \in \partial f(y),y\in \BbbS 
d ( - x\ast /\| x\ast \| ,NA(x)) \geq \alpha > 0, where we are using (4.17) and the fact

that z \in A \setminus \BbbS and x\ast \in \partial f(\=x) with \=x\in \BbbS in the first inequality. The above expression
entails a contradiction, and hence we must have \BbbS = FA( - x\ast ). Therefore, our claim
is true and PA(v) \in FA( - x\ast ) = \BbbS , and thus PA(v) solves problem (CP).

5. Conclusions and open questions. In this work, we introduce the notion
of a sharp set and use it to analyze the single projection procedure for solving convex
optimization problem. To conclude, we outline the directions for future work.

1. The paper [3] proved the finite convergence of projection-type methods (e.g.,
alternating projections method, Douglas--Rashford) between a closed half
space and a polyhedral set for the cases when the two sets do not intersect.
However, the authors in [3] do not provide an estimation of how many steps
are required for the convergence. Can Theorem 4.5 be used to estimate the
number of steps required for convergence of the projection-type algorithms
analyzed in [3]?

2. The same results in Theorem 4.5 still hold for small perturbations of the
linear function, namely \^x \star \in \scrH with \| \^x \star  - x\ast \| small enough so that \^x \star \in 
int
\bigcup 

x\in FA(x\ast )NA(x). This allows inexact projections, reducing the computa-
tional effort. This observation is not trivial for nonlinear functions. However,
it is worth noticing that the SPP may ensure finite termination for nonlinear
problems with inexact gradient oracles, provided that we consider an oracle
with small error and implement projections with sufficiently high accuracy
as a finite operation. The precise conditions for ensuring these properties are
the topic of future research.

3. Bundle methods [18] are designed to minimize nonsmooth convex functions.
These methods approximate the original function by a suitable piecewise func-
tion, and the iterates are minimizers of these approximations. Since these
approximations have a polyhedral epigraph, they will always be sharp sets
(i.e., condition (i) in Theorem 4.10 will always hold for some \alpha > 0). So, if
the modulus of sharpness of the current approximation is known, conditions
(a)--(b) in Theorem 4.10 could potentially provide a simple way of computing
the iterates.
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1678 BUI, BURACHIK, NURMINSKI, AND TAM

4. From Proposition 3.12, for any polyhedral set, there is \alpha > 0 such that it is
\alpha -sharp w.r.t. every unit vector. It is interesting to ask whether the converse
statement is true, namely: if a set is \alpha -sharp w.r.t. every unit vector for some
\alpha > 0, then is it true that the set must be polyhedral?
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