
Optimization, 2013
http://dx.doi.org/10.1080/02331934.2013.840625

A splitting bundle approach for non-smooth non-convex minimization

A. Fudulia, M. Gaudiosob∗ and E.A. Nurminskic

aDipartimento di Matematica e Informatica,Università della Calabria, Rende, Italy;
bDipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica – DIMES,
Università della Calabria, Rende, Italy; cFar Eastern Federal University and Institute for
Automation and Control Problems Far Eastern Branch of Russian AS, Vladivostok, Russia

(Received 10 March 2013; accepted 11 August 2013)

We present a bundle-type method for minimizing non-convex non-smooth func-
tions. Our approach is based on the partition of the bundle into two sets, taking
into account the local convex or concave behaviour of the objective function.
Termination at a point satisfying an approximate stationarity condition is proved
and numerical results are provided.

Keywords: non-smooth optimization; bundle methods; non-convex optimization

AMS Subject Classifications: 90C26; 65K05

1. Introduction

We tackle the following unconstrained minimization problem:

min
x∈Rn

f (x),

where f : R
n �→ R is a possibly non-convex and not necessarily differentiable function.

In many practical applications, one is faced with the need of solving problems which are
at the same time non-convex and non-smooth. Among the others, we cite here some recent
applications in Machine Learning [1–6] where both non-smoothness [7] and non-convexity
[8] enter into the play.

The literature on treatment of non-differentiability in convex and non-convex cases is
extremely rich (see [9]). Some sample papers in the convex case are [10–19]. Moreover
in [20–23] several techniques allowing inexact calculation of the objective function are
introduced.

In the non-convex setting, many algorithms can be considered as the natural evolution of
bundle-type methods [24,25] originally devised for dealing with convex minimization.[26]
We recall here [27–33]. Different approaches are based on appropriate extensions of algo-
rithms working for smooth problems. We cite [34,35], which modify the Newton or Quasi-
Newton method to cope with non-smoothness. Gradient sampling and discrete gradient
techniques have been fruitfully adopted in [36–39] and [40,41], respectively. Finally in
[42,43] the authors present some techniques for the minimization of non-convex maximum

∗Corresponding author. Email: gaudioso@deis.unical.it

© 2013 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

2 A. Fuduli et al.

eigenvalue functions and for non-smooth functions which are infinite maxima of eigenvalue
functions.

The approach presented in this paper belongs to the bundle class and it is based on the
construction of a piecewise affine model of the objective function. It is related to [44–46].
In particular, it shares with [45] the basic idea of partitioning the bundle of information
into two subsets aimed at capturing, respectively, a kind of convex and concave behaviour
around the current point in the iterative descent procedure.

The basic difference with respect to [45] is in use of the partitioned bundle in the
construction of the objective function model: in fact in [45] the bundle splitting is embedded
in a kind of implicit trust region fashion, whereas in this paper a penalty function approach
is adopted.

The paper is organized as follows. In Section 2, we introduce our approach at the basis
of the bundle penalty method, which is described in Section 3 and whose convergence to
stationary points is proved in Section 4. The quadratic subprogramme, which is to be solved
at each iteration, is discussed in Section 5. Finally, in Section 6, some numerical results are
presented.

Throughout the paper, we denote by xT y the inner product of the vectors x and y.

2. The basic approach

We assume that f is locally Lipschitz, i.e. it is Lipschitz on every bounded set. Then, given
a point x , the generalized gradient (or Clarke’s gradient or subdifferential) is defined as
follows:

∂ f (x) = conv{g|g ∈ R
n,∇ f (xk) → g, xk → x, xk �∈ � f }

where � f is the set (of zero measure) where f is not differentiable. An extension of the
generalized gradient is the Goldstein ε-subdifferential ∂G

ε f (x) defined as

∂G
ε f (x) = conv{∂ f (y)|‖y − x‖ ≤ ε}.

We assume also that, at any point x , we are able to compute both the objective function
value and a subgradient g ∈ ∂ f (x), i.e. an element of the generalized gradient.

Now we introduce our approach, recalling the basic bundle splitting idea of [45]. We
denote by x j the so-called ‘stability centre’, corresponding to the current estimate of a
minimum in an iterative procedure, and by g j any subgradient of f at x j . At each iteration,
the bundle of available information is the set

B

= {(xi , f (xi), gi , αi , ai)|i ∈ I }

where xi , i ∈ I , are the iterates generated at the previous iterations, gi is a subgradient of
f at xi , αi is the linearization error between the actual value of the objective function at x j

and the linear expansion generated at xi and evaluated at x j , i.e.

αi

= f (x j) − f (xi) − gT

i (x j − xi), (2.1)

and
ai

= ‖x j − xi‖.
It is worth noting that, in the non-convex case, αi may be negative, since the first order

expansion at any point does not necessarily support from below the epigraph of the function.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 3

As in [45], we partition the set I into two sets I+ and I− defined as follows

I+

= {i |αi ≥ 0} I−

= {i |αi < 0}. (2.2)

The partition of I induces the partition of B according to the index sets I+ and I−. The
related points xi can be interpreted as points exhibiting, respectively, a kind of ‘convex
behaviour’ and ‘concave behaviour’ relatively to x j . We observe that I+ is never empty as
at least the element (x j , f (x j), g j , 0, 0) belongs to the bundle.

We define the following piecewise affine functions:

f+(x)

= max

i∈I+
{ f (xi) + gT

i (x − xi)} (2.3)

and

f−(x)

= max

{
0, max

i∈I−
[f (xi) + gT

i (x − xi)]
}

. (2.4)

Indicating by d the ‘displacement’ from x j , i.e. d

= x − x j , taking into account (2.1)

and neglecting the constant term f (x j), from (2.3) and (2.4) we obtain, respectively, the
following piecewise affine functions:

�+(d)

= max

i∈I+

{
gT

i d − αi

}
and

�−(d)

= max

{
0, max

i∈I−

[
gT

i d − αi

]}
.

Then in order to compute a tentative displacement we solve the following problem:

min
d

h(d), (2.5)

with

h(d)

= 1

2γ
‖d‖2 + �+(d) + u�−(d), (2.6)

where γ > 0 is the classic proximity parameter for bundle methods, u can be interpreted
as a positive penalty parameter and ‖ · ‖ is the Euclidean norm.

Note that function �+ corresponds to the classic ‘cutting plane function’, which is at
the basis of the well-known cutting plane method.[47,48] At d = 0, while �+ interpolates
the difference function f (x j +d)− f (x j) (since the index j belongs to I+ and it is α j = 0),
function �− is strictly positive around d = 0, provided I− is non-empty. Then the effect of
adding �− in the objective function h of problem (2.5) is to penalize the choice of ‘small’
displacements with respect to the current stability centre. Note also that h is strictly convex
and admits unique minimum.

Problem (2.5) can be rewritten in the form of a quadratic programme as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
d,v,z

q(d, v, z)

v ≥ gT
i d − αi , i ∈ I+

z ≥ gT
i d − αi , i ∈ I−

z ≥ 0,

(2.7)

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

4 A. Fuduli et al.

where

q(d, v, z)

= 1

2γ
‖d‖2 + v + uz.

The dual of programme (2.7) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
λ≥0,μ≥0

γ

2
‖G+λ + G−μ‖2 + αT+λ + αT−μ

eT λ = 1
eT μ ≤ u

(2.8)

where G+ and G− are matrices whose columns are, respectively, the vectors gi , i ∈ I+,
and gi , i ∈ I−. The symbol e indicates a vector of ones of appropriate dimension. The terms
αi , i ∈ I+ and αi , i ∈ I−, are grouped into the vectors α+ and α−, respectively.

The optimal primal solution (dγ u, vγ u, zγ u) is related to the optimal dual solution
(λγ u, μγ u) by the following formulae:

dγ u = −γ
(
G+λγ u + G−μγ u

)
(2.9a)

vγ u + uzγ u = − 1

γ
‖dγ u‖2 − αT+λγ u − αT−μγ u . (2.9b)

3. The algorithm

Our method is based on repeatedly solving problem (2.5). As in [45], by ‘main iteration’
we intend the set of steps where the stability centre remains unchanged. From the ‘main
iteration’, two exits may occur:

(i) termination, due to the satisfaction of an approximate stationarity condition;
(ii) update of the stability centre, if sufficient decrease in the objective function is

achieved.

The initialization of the algorithm requires a starting point x0 ∈ R
n and the initial

stability centre y coincides with x0. The initial bundle is made up by just one element
(y, f (y), gy, 0, 0), where gy ∈ ∂ f (y), so that I− is the empty set, while I+ is a singleton.
The following global parameters are to be set:

• the stationarity tolerance δ > 0 and the proximity measure ε > 0;
• the descent parameter m ∈ (0, 1) and the cut parameter ρ ∈ (m, 1);
• the increase parameter R > 1;
• the decrease parameter r ∈ (0, 1);
• the threshold η > 0 on the expected reduction;
• the threshold β > 0 on the linearization errors;
• the penalty parameter u > 0 on function �−.

A short description of the algorithm is the following:

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 5

Algorithmic Scheme

(1) Initialization.
(2) ‘Main iteration’.
(3) Updating of the bundle of information w.r.t. the new stability centre.

In the sequel, we describe in detail the ‘main iteration’ without indexing it for sake of
notational simplicity.

We remark that in general the ‘main iteration’ maintains the (updated) bundle of infor-
mation from previous iterations. Updating the bundle is necessary since the quantities αi

and ai are dependent on the stability centre.

Algorithm 3.1 (Main Iteration)

(0) If ‖gy‖ ≤ δ then STOP (stationarity achieved), else set

γ̄ :=
√

4β2u2 + 4‖gy‖2ε2 − 2βu

2‖gy‖2
,

γmin := r γ̄ , γmax := Rγmin, and θ := rγminδ.

Select γ ∈ [γmin, γmax].
(1) Solve program (2.5), obtain dγ u and compute

vγ u = max
i∈I+

{
gT

i dγ u − αi

}
.

If ‖dγ u‖ ≤ θ then go to 3, else if vγ u ≤ −η or I− = ∅ then go to 4.
(2) Select an index i ∈ I−, set I− := I− \ {i} and go to 1.
(3) Set

I+ := I+ \ {i ∈ I+ | ai > ε}
and

I− := ∅.

Calculate g∗ such that
‖g∗‖ = min

g∈conv{gi |i∈I+} ‖g‖.
If ‖g∗‖ ≤ δ then STOP (approximate stationarity achieved), else γmax := γmax −
r(γmax − γmin) and go to 1.

(4) Set x := y + dγ u. If
f (x) ≤ f (y) + mvγ u (3.1)

then set the new stability centre y := x and EXIT from the main iteration.
(5) Calculate g ∈ ∂ f (x) and set

α := max{−β, f (y) − f (x) + gT dγ u}.

(a) If α < 0 and ‖dγ u‖ > ε then insert the element (x, f (x), g, α, ‖dγ u‖) into
the bundle for an appropriate value of i ∈ I− and set γ := γ −r(γ −γmin).

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

6 A. Fuduli et al.

(b) Else, if gT dγ u ≥ ρvγ u then insert the element (x, f (x), g, max(0, α), ‖dγ u‖)
into the bundle for an appropriate value of i ∈ I+.

(c) Else find a scalar t ∈ (0, 1) such that a subgradient gt ∈ ∂ f (y + tdγ u) sat-
isfies the condition gT

t dγ u ≥ ρvγ u and insert the element (y + tdγ u, f (y +
tdγ u), gt , max(0, αt), t‖dγ u‖) into the bundle for an appropriate value of
i ∈ I+, where αt = f (y) − f (y + tdγ u) + tgT

t dγ u.

(6) Go to 1.

4. Convergence

In this section, we prove the finite termination of the overall method, under the following
assumptions:

A1 f is weakly semismooth;
A2 the set F0 = {x ∈ R

n | f (x) ≤ f (x0)} is compact, with Lipschitz constant equal
to L0.

Although Algorithm 3.1 is explicitly based on repeatedly solving problem (2.5), we show
the convergence by referring to iterative solutions of programme (2.7), which is equivalent
to (2.5). Throughout the section we indicate by (dγ u, vγ u, zγ u) and (dγ u, vγ u) the optimal
solutions of programme (2.7), when I− �= ∅ and I− = ∅, respectively. The corresponding
optimal function value, for fixed positive values of γ and u, is indicated by qγ u .

Lemma 4.1 For all γ and u, it holds

‖dγ u || ≤
√

‖gy‖2γ 2 + 2βuγ if I− �= ∅ (4.1)

and
‖dγ u || ≤ ‖gy‖γ if I− = ∅. (4.2)

Proof Consider the case I− �= ∅ and let (λγ u, μγ u) be the optimal solution to program
(2.8). Take the feasible solution (λ̄, μ̄) with μ̄ = 0 and λ̄ having all the components equal to
zero, except the one in correspondence to (y, f (y), gy, 0, 0), which is set equal to 1. Then
we have

γ

2
‖G+λγ u + G−μγ u‖2 + αT+λγ u + αT−μγ u ≤ γ

2
‖G+λ̄ + G−μ̄‖2 + αT+λ̄ + αT−μ̄,

i.e.
γ

2
‖G+λγ u + G−μγ u‖2 + αT+λγ u + αT−μγ u ≤ γ

2
‖gy‖2.

Thus, taking into account (2.9a), we obtain

1

2γ
‖dγ u‖2 ≤ γ

2
‖gy‖2 − αT−μγ u . (4.3)

Because eT μγ u ≤ u and −α− ≤ βe, we have:

−αT−μγ u ≤ βu. (4.4)

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 7

Combining (4.3) and (4.4), we obtain

‖dγ u‖2 ≤ ‖gy‖2γ 2 + 2βuγ,

which completes the proof for the case I− �= ∅. The case I− = ∅ can be easily proved in
the same way, by considering that whenever I− = ∅ the variable μγ u does not appear in
the formulation of problem (2.8). �

Lemma 4.2 For all u > 0 there exists a positive value γ̄ such that for γ ∈ (0, γ̄] it holds

‖dγ u‖ ≤ ε.

Proof For β > 0 fix

γ̄

=

√
4β2u2 + 4‖gy‖2ε2 − 2βu

2‖gy‖2
> 0

and observe that, from δ < ‖gy‖ ≤ L0, one has that γ̄ is bounded away from zero, since it
is

γ̄ >

√
4β2u2 + 4δ2ε2 − 2βu

2L2
0

> 0.

The property follows by simply substituting γ̄ in (4.1) and (4.2) and taking into account
that

βu
√

4β2u2 + 4‖gy‖2ε2 ≥ 2β2u2.

�

Remark 4.3 On the basis of Lemma 4.2, and taking into account γmin = r γ̄ , with r ∈
(0, 1), an infinite number of insertions of bundle indices into I− cannot occur. In fact each
time such an insertion takes place, γ is reduced and its updating formula ensures that, after
a finite number of updates, γ becomes smaller than γ̄ and, consequently, all the newly
generated bundle indices are in I+.

Lemma 4.4 Algorithm 3.1 cannot cycle infinitely many times through steps 1 and 3.

Proof Assume by contradiction that such case occurs, that is the algorithm never stops for
satisfaction of the criterion at step 3. Let us index by k ∈ K all the quantities referred to at
the k-th passage. We have

‖d(k)
γ u ‖ ≤ θ

and

‖g∗(k)‖ > δ.

Observe that γ ≤ γmax and that by construction γmax reduces in a finite number of steps
below the threshold γ̄ . Thus, from Lemma 4.2, it follows that asymptotically ‖d(k)

γ u ‖ ≤ ε,
which in turn implies that the indices of the new bundle elements are asymptotically inserted
into I+.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

8 A. Fuduli et al.

Because at step 3 we set I− = ∅, from the above considerations and taking into account
(2.9a) and the constraints in problem (2.8), it follows that there exists an index k̄ ∈ K such
that for all k ≥ k̄ the direction d(k)

γ u can be expressed in the form

d(k)
γ u = −γ g(k),

with g(k) ∈ conv{gi | i ∈ I (k)
+ }. But since ‖d(k)

γ u ‖ ≤ θ and ‖g∗(k)‖ > δ, we have

θ ≥ ‖d(k)
γ u ‖ = γ ‖g(k)‖ ≥ γmin‖g∗(k)‖ >

θ

rδ
δ = θ

r
> θ,

reaching a contradiction. �

Lemma 4.5 For all γ and u it holds:

(i)
−γ ‖gy‖2 ≤ qγ u ≤ uβ if I− �= ∅
−γ ‖gy‖2 ≤ qγ u ≤ 0 if I− = ∅.

(ii) 0 ≤ zγ u ≤ β +
‖gy‖

√
‖gy‖2γ 2 + 2βuγ

u
.

Proof

(i) The triplet (d̄, v̄, z̄) = (0, 0, β) and the couple (d̄, v̄) = (0, 0) are feasible for
programme (2.7), respectively, in the two cases I− �= ∅ and I− = ∅. The corre-
sponding objective function values are q(d̄, v̄, z̄) = uβ and q(d̄, v̄) = 0.
As for the lower bounds, note that, because the index corresponding to the bundle
element (y, f (y), gy, 0, 0) belongs to I+, q is minorized by the strictly convex
function

q̂(d)

= 1

2γ
‖d‖2 + gT

y d,

and the thesis follows taking into account that the minimal function value of q̂ is
−γ ‖gy‖2.

(ii) From qγ u ≤ uβ, from definition of v and taking into account that the element
(y, f (y), gy, 0, 0) belongs to I+, we have

uzγ u ≤ uβ − 1

2γ
‖dγ u‖2 − vγ u ≤ uβ − vγ u

≤ uβ + ‖gy‖‖dγ u‖ ≤ uβ + ‖gy‖
√

‖gy‖2γ 2 + 2βuγ ,

where the last inequality descends from Lemma 4.1. �

Lemma 4.6 Every time step 4 is entered we have

|vγ u | ≥ min

{
η,

θ2

2γ

}
.

Proof At step 4, one arrives when ‖dγ u‖ > θ and either vγ u ≤ −η or I− = ∅. The
property is obviously true in case vγ u ≤ −η. If I− = ∅, we have qγ u ≤ 0 and vγ u ≤ 0.
Thus, from the definition of qγ u , we obtain:

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 9

|vγ u | ≥ 1

2γ
‖dγ u‖2 >

1

2γ
θ2.

�

Remark 4.7 Consequence of Lemma 4.6 is that all times condition (3.1) is tested, vγ u

is bounded away from zero. In fact θ depends on γmin , while γ belongs to the interval
[γmin, γmax]. Parameters γmin and γmax depend in turn on γ̄ , which is bounded away from
zero (see Lemma 4.2).

Lemma 4.8 Let
{
(d(k)

γ u , v
(k)
γ u , z(k)

γ u)
}

k∈K
be a subsequence generated within a single ‘main

iteration’ such that ∥∥∥d(k)
γ u

∥∥∥ > θ

and

f
(

y + d(k)
γ u

)
− f (y) > mv(k)

γ u

with the algorithm looping from step 1 to step 4. Then the following hold:

(i) step 5(c) of the algorithm is well posed, i.e. there exist two nonnegative scalars t (k)
1

and t (k)
2 , 0 ≤ t (k)

1 < t (k)
2 < 1, such that for any t ∈ [t (k)

1 , t (k)
2] the condition

g(t)T d(k)
γ u ≥ ρv(k)

γ u

is satisfied for every g(t) ∈ ∂ f (y + td(k)
γ u).

(ii) whenever a new bundle index is inserted into I+ the condition

gT
k d(k)

γ u ≥ ρv(k)
γ u

holds, where gk is the subgradient corresponding to the new bundle element.

Proof

(i) See proof of Lemma 4.1(ii) in [45]. Observe that at step 4 we arrive when vγ u ≤ 0.
(ii) See proof of Lemma 4.1(iii) in [45]. �

Remark 4.9 Property (i) of the above lemma guarantees well-posedness of step 5(c) in
the sense that, letting εk be the length of the interval [t (k)

1 , t (k)
2], there exists a sufficiently

large integer m (say m ≥ 2
εk

) such that an interval of length 1
m is contained in [t (k)

1 , t (k)
2].

Consequently, sampling on all such intervals allows implementation of the step.

The proof of the following properties proceeds along guidelines which are similar to
[45]. We report them for sake of completeness.

Lemma 4.10 Algorithm 3.1 cannot cycle infinitely many times through steps 1 and 4.

Proof We need to show that it is impossible to have infinitely many times ‖dγ u‖ > θ and
the descent condition (3.1) not satisfied.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

10 A. Fuduli et al.

Indexing by k ∈ K the k-th passage through steps 1 and 4, we observe that, by Remark
4.3, there exists an index k̄ such that for every k ≥ k̄ the index of each new bundle element
is put in I+ with γ and I− remaining unchanged.

Under such condition, for k ≥ k̄ the sequence {q(k)
γ u } is monotonically non-decreasing,

and, by Lemma 4.5, is bounded and hence it is convergent.
By Lemmas 4.1 and 4.5, respectively, the sequences {d(k)

γ u } and {z(k)
γ u } are bounded and

admit a convergent subsequence, say {d(k)
γ u }k∈K′⊆K and {z(k)

γ u }k∈K′⊆K, respectively.
The above considerations imply that also the sequence {v(k)

γ u }k∈K′⊆K is convergent to

a limit, say v̄. Now let i and j be two successive indices in K′ and ζi

= max{0, αi }, with

αi = max{−β, f (y) − f (y + d(i)
γ u) + gT

i d(i)
γ u} and gi ∈ ∂ f (y + d(i)

γ u). We have

v
(j)
γ u ≥ gT

i d(j)
γ u − ζi , (4.5)

f (y + d(i)
γ u) − f (y) > mv(i)

γ u

and, by Lemma 4.8,
gT

i d(i)
γ u ≥ ρv(i)

γ u .

We note that
gT

i d(i)
γ u − ζi ≥ ρv(i)

γ u . (4.6)

This inequality is trivially verified if ζi = 0, and this occurs whenever it is αi ≤ 0. Only
the case αi > 0 is to be considered, that is αi = f (y) − f (y + d(i)

γ u) + gT
i d(i)

γ u > 0. In fact,
taking into account that ρ > m, it holds

gT
i d(i)

γ u − ζi = f
(

y + d(i)
γ u

)
− f (y) > mv(i)

γ u > ρv(i)
γ u .

Combining (4.5) and (4.6) we obtain

v
(j)
γ u − ρv(i)

γ u ≥ gT
i

(
d(j)
γ u − d(i)

γ u

)
and passing to the limit

(1 − ρ)v̄ ≥ 0. (4.7)

If I− �= ∅, inequality (4.7) is a contradiction because v̄ ≤ −η. In case I− = ∅, v̄ ≤ 0 and
inequality (4.7) implies v̄ = 0, which contradicts Lemma 4.6. �

From Lemmas 4.4 and 4.10, the following theorem descends.

Theorem 4.11 The ‘main iteration’ terminates after a finite number of steps.

Theorem 4.12 For any ε > 0 and δ > 0, the algorithm stops in a finite number of ‘main
iterations’ at a point satisfying the approximate stationarity condition

‖g∗‖ ≤ δwith g∗ ∈ ∂G
ε f (y). (4.8)

Proof The approximate stationarity condition (4.8) is exactly the stopping condition tested
at step 3 of the ‘main iteration’. Now suppose that it is not verified for an infinite number
of ‘main iteration’ executions. From Theorem 4.11, it follows that infinitely many times the

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 11

descent condition is satisfied. Let y(k) be the stability centre at k-th passage through ‘main
iteration’; then ‖d(k)

γ u ‖ > θ(k),

f (y(k+1)) ≤ f (y(k)) + mv(k)
γ u

and

f (y(k+1)) − f (y(0)) ≤ m
k∑

i=0

v(i)
γ u .

By Remark 4.7, v
(i)
γ u is bounded away from zero. Therefore, by passing to the limit we

obtain
lim

k→∞ f (y(k+1)) − f (y(0)) ≤ −∞
which is a contradiction, since f is bounded from below as a consequence of assumptions
A1 and A2. �

5. Computing the search direction

In this section, we focus on solving problem (2.5). We will show that such a problem reduces
to finding a minimum norm vector inside a set given by the sum of polyhedra.

We use the following notation. Given a set A, we indicate by σA the support function
of A, i.e.

σA(x)

= max

a∈A
aT x

and by Nr(A) the minimum norm vector in A. Moreover conv(A) and Co(A) denote,
respectively, the convex and the conic hulls of A.

Solving problem (2.5) is equivalent to

min
d

h̄(d), (5.1)

where

h̄(d)

= 1

2
‖d‖2 + γ max

i∈I+

{
gT

i d − αi

}
+ γ− max

{
0, max

i∈I−
[gT

i d − αi]
}

, (5.2)

with γ−

= uγ > 0. Function h̄ can be put in the form

h̄(d) = 1

2
‖d‖2 + γ max

b∈S+

∑
i∈I+

bi (g
T
i d − αi) + γ− max

c∈S−

∑
j∈I−

c j

(
gT

j d − α j

)
,

where

S+

=

⎧⎨
⎩b ∈ R

|I+||
∑
i∈I+

bi = 1, bi ≥ 0, i ∈ I+

⎫⎬
⎭

and

S−

=

⎧⎨
⎩c ∈ R

|I−||
∑
i∈I−

ci ≤ 1, ci ≥ 0, i ∈ I−

⎫⎬
⎭ .

Letting

d̄ =
[

d
1

]
and ḡi =

[
gi

−αi

]

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

12 A. Fuduli et al.

and indicating by Ḡ+

= conv{ḡi , i ∈ I+} and Ḡ−

= conv{0, ḡi , i ∈ I−}, function h̄
becomes:

h̄(d̄) = 1

2
‖d̄‖2 − 1

2
+ γ max

b∈S+

∑
i∈I+

bi ḡ
T
i d̄ + γ− max

c∈S−

∑
i∈I−

ci ḡ
T
i d̄

= 1

2
‖d̄‖2 − 1

2
+ σγ Ḡ+(d̄) + σγ−Ḡ−(d̄)

= 1

2
‖d̄‖2 − 1

2
+ σ(γ Ḡ++γ−Ḡ−)(d̄).

Thus problem (2.7) reduces to the following:⎧⎨
⎩ −1

2
+ min

d̄

1

2
‖d̄‖2 + σ(γ Ḡ++γ−Ḡ−)(d̄)

eT
n+1d̄ = 1,

(5.3)

whose Lagrangean dual is the one-dimensional problem

−1

2
− min

p
{p + φ(p)}, (5.4)

where p is the dual variable corresponding to the constraint eT
n+1d̄ = 1 and

φ(p)

= − min

d̄

1

2
‖d̄‖2 + σ(γ Ḡ++γ−Ḡ−+pen+1)

(d̄).

It can be shown that

φ(p) = 1

2
‖Nr(γ Ḡ+ + γ−Ḡ− + pen+1)‖2. (5.5)

Note that the evaluation of the objective function φ of the univariate optimization
problem (5.4) requires to solve a projection problem of the type (5.5). Note also that function
φ is differentiable and, once φ(p) has been computed for a certain value of p, its derivative
corresponds to the last component of the vector Nr(γ Ḡ+ + γ−Ḡ− + pen+1). Similar
problems have been treated in many papers. See [49–52].

Finally we remark that, in case γ− is sufficiently large, the set γ−Ḡ− can be replaced
by the cone K− = Co{ḡi , i ∈ I−} and φ(p) simplifies to

φK−(p)

= 1

2
‖Nr(γ Ḡ+ + K− + pen+1)‖2.

6. Numerical results

The algorithm described in Section 3 is not implementable as it requires, in principle,
unbounded storage.Acommon way to overcome such difficulty is to introduce a subgradient
aggregation technique (see [26,53]).

We proceed along the guidelines of [45]. In particular, let (d̂γ u, v̂γ u, ẑγ u) and (λ̂γ u, μ̂γ u)

be the optimal solutions of programmes (2.7) and (2.8), respectively, in correspondence to
fixed values of γ and u. The aggregation is based on the following definitions:

ga+

= G+λ̂γ u, αa+

= αT+λ̂γ u

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 13

Table 1. L. Lukšan and J. Vlček test problems.

Problem n f ∗

1 Rosenbrock 2 0
2 Crescent 2 0
3 CB2 2 1.9522245
4 CB3 2 2
5 DEM 2 −3
6 QL 2 7.2
7 LQ 2 −1.4142136
8 Mifflin1 2 −1
9 Mifflin2 2 −1
10 Rosen-Suzuki 4 −44
11 Shor 5 22.600162
12 Maxquad 10 −0.8414083
13 Maxq 20 0
14 Maxl 20 0
15 Goffin 50 0
16 El-Attar 6 0.5598131
17 Wolfe 2 −8
18 MXHILB 50 0
19 L1HILB 50 0
20* Colville1 5 −32.348679
21 Gill 10 9.7857721
22* TR48 48 −638565
23 Shell Dual 15 32.348679
24 Steiner2 12 16.703838

and, in case I− �= ∅,

ga−

= G−μ̂γ u

u
, αa−

= αT−μ̂γ u

u
.

The aggregate problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
d,v,z

q(d, v, z)

v ≥ gT
a+d − αa+

v ≥ gT
i d − αi , i ∈ Ia+

z ≥ gT
a−d − αa+

z ≥ gT
i d − αi , i ∈ Ia−

z ≥ 0,

(6.1)

has the same optimal solution (d̂γ u, v̂γ u, ẑγ u) as problem (2.7), where Ia+ and Ia− are
arbitrary subsets of I+ and I−, respectively.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

14 A. Fuduli et al.

Table 2. L. Lukšan and J. Vlček test problems: computational results.

NCVX NCVXpenalty (10−6) NCVXpenalty (10−2)

Problem N f f N f secs f N f secs f

Rosenbrock 70 5.009E−07 72 1.98 1.338E−06 68 0.65 1.584E−05
Crescent 22 8.022E−06 27 0.73 7.550E−06 19 0.27 2.046E−05
CB2 18 1.9522245 20 0.58 1.9522246 19 0.21 1.9522249
CB3 15 2.0000001 19 0.64 2.0000000 19 0.26 2
DEM 21 −2.9999999 10 0.36 −3.0000000 15 0.26 −2.9999998
QL 28 7.2000005 21 0.62 7.2000001 21 0.49 7.2000001
LQ 9 −1.4142135 8 0.21 −1.4142136 9 0.15 −1.4142136
Mifflin1 93 −0.9999822 99 3.96 −0.9999839 104 0.7 −0.99995667
Mifflin2 13 −1.0000000 10 0.28 −0.9999999 12 0.24 −1.000000
Rosen 29 −44.0000000 36 1.49 −44.0000000 46 0.44 −43.999998
Shor 44 22.600162 48 1.83 22.600212 55 0.53 22.600163
Maxquad 56 −0.8414078 61 4.85 −0.8414077 65 0.82 −0.84140645
Maxq 293 1.660E−07 324 11.84 2.768E−05 303 5.58 1.174E−05
Maxl 44 1.110E−15 22 1.02 3.400E−07 43 0.9 6.392E−07
Goffin 148 1.142E−13 57 71.77 6.056E−8 59 34.38 3.452E−07
El-Attar 152 0.5598163 287 8.75 0.55981572 166 1.63 0.55981541
Wolfe 21 −7.9999998 26 1.07 −7.9999999 27 0.42 −8.0000000
MXHILB 33 1.768E−07 13 1.27 2.936E − 07 14 0.84 2.170E − 07
L1HILB 104 6.978E−07 33 9.04 8.468E−07 28 2.22 7.523E − 07
Colville1∗ 47 −32.348679 51 1.43 –32.348678 73 0.56 −32.34866
Gill 164 9.7857746 253 32.05 9.7860516 169 1.39 9.7860738
TR48∗ 353 −638565 388 1340.7 –638565 397 1546.4 −638565
Shell Dual 1497 32.349404 1500 393.76 32.41996 1500 55.08 32.37687
Steiner2 196 16.703838 173 18.69 16.703839 171 2.7 16.703874

Note that monotonicity of the sequence {q(k)
γ u }, necessary in the proof of Lemma 4.10,

is guaranteed by the aggregation.
The algorithm, encompassing the aggregation scheme, has been implemented in double

precision C++ under a Linux Ubuntu system.
The code, called NCVXpenalty, has been tested on two sets of functions. The first

set, listed in Table 1 (see Lukšan and Vlček [54]), is constituted by 24 problems available
on the web at the URL http://www.cs.cas.cz/ l̃uksan/test.html. All test problems, except
Rosenbrock, are non-smooth. We did not include function HS78 (reported in [54]), because
it is unbounded from below and then does not satisfy assumption A2.

The second set, known as ‘Ferrier polynomials’,[29,55] is constituted by the following
five test functions:

f1(x)

=

n∑
i=1

|li (x)|

f2(x)

=

n∑
i=1

(li (x))2

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 15

Table 3. Ferrier polynomials: computational results.

RedistProx NCVXpenalty (10−6) NCVXpenalty (10−2)

k n N f f N f secs f N f secs f

1 1 2 0.000000 8 0.27 0.000000 8 0.16 0.000000
2 1 2 0.000000 1 0.00 0.000000 1 0.00 0.000000
3 1 2 0.000000 8 0.28 0.000000 8 0.18 0.000000
4 1 5 0.500000 12 0.42 0.500000 12 0.13 0.500000
5 1 10 0.000943 10 0.26 0.500000 10 0.15 0.500000
1 2 12 0.086533 22 0.57 2.758E−07 23 0.38 1.251E−06
2 2 16 0.000005 35 0.89 1.296E−06 35 0.32 9.789E−07
3 2 14 0.000000 8 0.27 1.621E−05 8 0.16 1.621E−05
4 2 10 0.036623 21 0.47 8.920E−07 21 0.23 8.942E−07
5 2 16 0.000000 26 0.74 2.450E−07 300 1.34 3.291E−06
1 3 13 0.000726 21 0.57 1.708E−08 22 0.31 2.284E−06
2 3 26 0.000000 17 0.2 1.922E−07 17 0.2 1.922E−07
3 3 14 0.000467 10 0.44 3.704E−06 10 0.16 3.704E−06
4 3 12 0.052922 30 0.9 4.402E−05 32 0.25 6.551E−07
5 3 16 0.000000 37 0.73 9.711E−07 29 0.29 4.923E−07
1 4 17 0.074170 32 0.89 1.292E−08 34 0.36 1.476E−08
2 4 18 0.000000 12 0.22 1.919E−11 12 0.2 1.919E−11
3 4 16 0.007471 11 0.4 2.819E−06 11 0.19 2.819E−06
4 4 18 0.025722 26 0.75 9.418E−07 24 0.32 6.072E−07
5 4 23 0.019105 47 0.77 2.272E−07 29 0.34 8.029E−07
1 5 23 0.213263 35 1.09 1.313E−07 51 0.47 8.579E−07
2 5 49 0.000000 23 2.93 1.007E−08 22 3.16 1.642E−07
3 5 20 0.680228 300 1.73 1.190E−06 300 1.37 1.160E−06
4 5 3 7.948708 40 1.02 3.014E−07 31 0.35 3.213E−07
5 5 26 0.352803 36 1.05 5.708E−07 43 0.37 8.689E−07
1 6 33 0.000436 44 1.6 7.200E−07 36 0.59 2.880E−07
2 6 35 0.000000 17 0.32 5.502E−07 17 0.21 5.498E−07
3 6 25 0.093031 54 0.89 9.200E−07 41 0.34 7.789E−07
4 6 41 0.022756 38 0.96 5.018E−08 33 0.31 7.836E−07
5 6 35 0.113835 52 1.04 3.001E−07 32 0.39 8.732E−08
1 7 34 0.146978 46 1.42 5.054E−07 78 0.6 1.268E−07
2∗ 7∗ 48 0.000000 – – – – – –
3 7 30 0.018131 61 0.89 7.500E−07 61 0.4 7.497E−07
4 7 34 0.239281 39 1.36 2.323E−07 60 0.52 2.896E−08
5 7 41 0.120009 92 2.3 1.512E−07 81 0.57 1.461E−07
1 8 39 0.379768 163 5.49 1.752E−07 118 1.05 5.685E−07
2 8 59 0.074621 33 0.66 3.538E−08 33 0.38 3.539E−08
3 8 34 0.067895 84 1.17 6.957E−08 84 0.57 6.949E−08
4 8 32 0.797753 109 3.18 0.062617 70 0.64 0.0626197
5 8 38 1.077575 63 2.4 6.331E−07 89 0.72 7.895E−07
1 9 67 0.000001 168 8.54 4.820E−07 134 1.17 5.943E−07
2 9 37 0.000000 36 0.87 7.661E−09 38 0.38 1.801E−08
3 9 40 0.070714 83 1.09 6.742E−07 83 0.54 6.741E−07
4 9 61 0.000584 105 5.45 3.080E−07 105 1.09 7.576E−07
5 9 40 0.769331 160 5.83 7.533E−07 139 1.18 5.946E−07

(continued)

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

16 A. Fuduli et al.

Table 3. (Continued)

RedistProx NCVXpenalty (10−6) NCVXpenalty (10−2)

k n N f f N f secs f N f secs f
1 10 52 0.106221 108 6.17 1.355E−06 115 1.36 4.389E−07
2∗ 10∗ 36 0.000000 – – – 36 0.41 3.226E−08
3 10 39 0.016641 66 0.95 1.014E−07 66 0.48 1.013E−07
4 10 46 0.165442 160 8.59 4.662E−07 115 0.96 3.806E−07
5 10 66 0.036327 129 5.53 8.415E−07 141 1.5 8.410E−07

Table 4. Ferrier polynomials: summary of Table 3.

wins with # solved to # solved to
respect to N f f ∗ < 10−6 f ∗ < 10−3

RedistProx 37 13 20

NCVXpenalty 14 42 46

f3(x)

= max

1≤ı≤n
|li (x)|

f4(x)

=

n∑
i=1

|li (x)| + 0.5‖x‖2

f5(x)

=

n∑
i=1

|li (x)| + 0.5‖x‖,

where li is a real function of n real variables defined as follows:

li (x)

=

(
i x2

i − 2xi − C
)

+
n∑

j=1

x j ,

with C being a fixed constant. All such test functions but f2 are non-smooth; moreover if
C = 0 then

min
x

fk(x) = 0, k = 1, . . . , 5.

The parameters have been set as follows: δ = 10−4, ε = 10−2, m = 0.2, r = 0.5,
R = 106, ρ = 0.9, η = 0.1, β = 1 and u = 10−3. The maximum number of function
evaluations has been fixed to 1500 for the first test set and 300 (as in [29]) for the second
one.

We stop the code also when I− = ∅ and vγ u ≤ δ̄, with δ̄ = 10−6. This appears
reasonable, because I+ may contain also indices corresponding to negative linearization
errors (see Step 5 of Algorithm 3.1) relative to points close to the stability centre.

The results of our numerical experiments on the L. Lukšan and J. Vlček test problems
are reported in Table 2, where N f indicates the number of function evaluations, secs is the

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 17

Table 5. Ferrier polynomials: Computational results.

RedistProx NCVXpenalty (10−6) NCVXpenalty (10−2)

k n N f f N f secs f N f secs f

1 1 2 0.000000 8 0.27 0.000000 8 0.16 0.000000
2 1 2 0.000000 1 0.00 0.000000 1 0.00 0.000000
3 1 2 0.000000 8 0.28 0.000000 8 0.18 0.000000
4 1 28 0.000000 12 0.42 0.500000 12 0.13 0.500000
5 1 13 0.000000 10 0.26 0.500000 10 0.15 0.500000
1 2 301 0.000031 22 0.57 2.758E−07 23 0.38 1.251E−06
2 2 22 0.000001 35 0.89 1.296E−06 35 0.32 9.789E−07
3 2 14 0.000000 8 0.27 1.621E−05 8 0.16 1.621E−05
4 2 301 0.000188 21 0.47 8.920E−07 21 0.23 8.942E−07
5 2 16 0.000000 26 0.74 2.450E−07 300 1.34 3.291E−06
1 3 19 0.000000 21 0.57 1.708E−08 22 0.31 2.284E−06
2 3 26 0.000000 17 0.2 1.922E−07 17 0.2 1.922E−07
3 3 86 0.000000 10 0.44 3.704E−06 10 0.16 3.704E−06
4 3 67 0.000001 30 0.9 4.402E−05 32 0.25 6.551E−07
5 3 16 0.000000 37 0.73 9.711E−07 29 0.29 4.923E−07
1 4 26 0.000000 32 0.89 1.292E−08 34 0.36 1.476E−08
2 4 18 0.000000 12 0.22 1.919E−11 12 0.2 1.919E−11
3 4 34 0.000002 11 0.4 2.819E−06 11 0.19 2.819E−06
4 4 301 0.000005 26 0.75 9.418E−07 24 0.32 6.072E−07
5 4 301 0.010121 47 0.77 2.272E−07 29 0.34 8.029E−07
1 5 149 0.000001 35 1.09 1.313E−07 51 0.47 8.579E−07
2 5 49 0.000000 23 2.93 1.007E−08 22 3.16 1.642E−07
3 5 261 0.000001 300 1.73 1.190E−06 300 1.37 1.160E−06
4 5 186 0.000036 40 1.02 3.014E−07 31 0.35 3.213E−07
5 5 91 0.002217 36 1.05 5.708E−07 43 0.37 8.689E−07
1 6 41 0.000000 44 1.6 7.200E−07 36 0.59 2.880E−07
2 6 35 0.000000 17 0.32 5.502E−07 17 0.21 5.498E−07
3 6 97 0.001095 54 0.89 9.200E−07 41 0.34 7.789E−07
4 6 60 0.000000 38 0.96 5.018E−08 33 0.31 7.836E−07
5 6 301 0.015945 52 1.04 3.001E−07 32 0.39 8.732E−08
1 7 301 0.000941 46 1.42 5.054E−07 78 0.6 1.268E−07
2∗ 7∗ 48 0.000000 – – – – – –
3 7 38 0.000017 61 0.89 7.500E−07 61 0.4 7.497E−07
4 7 100 0.008193 39 1.36 2.323E−07 60 0.52 2.896E−08
5 7 67 0.018334 92 2.3 1.512E−07 81 0.57 1.461E−07
1 8 301 0.000008 163 5.49 1.752E−07 118 1.05 5.685E−07
2 8 168 0.000000 33 0.66 3.538E−08 33 0.38 3.539E−08
3 8 301 0.000024 84 1.17 6.957E−08 84 0.57 6.949E−08
4 8 301 0.000021 109 3.18 0.062617 70 0.64 0.0626197
5 8 301 0.000534 63 2.4 6.331E−07 89 0.72 7.895E−07
1 9 67 0.000001 168 8.54 4.820E−07 134 1.17 5.943E−07
2 9 37 0.000000 36 0.87 7.661E−09 38 0.38 1.801E−08
3 9 193 0.000010 83 1.09 6.742E−07 83 0.54 6.741E−07
4 9 150 0.000000 105 5.45 3.080E−07 105 1.09 7.576E−07
5 9 117 0.002150 160 5.83 7.533E−07 139 1.18 5.946E−07

(continued)

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

18 A. Fuduli et al.

Table 5. (Continued)

RedistProx NCVXpenalty (10−6) NCVXpenalty (10−2)

k n N f f N f secs f N f secs f

1 10 85 0.000010 108 6.17 1.355E−06 115 1.36 4.389E−07
2∗ 10∗ 36 0.000000 – – – 36 0.41 3.226E−08
3 10 154 0.002658 66 0.95 1.014E−07 66 0.48 1.013E−07
4 10 67 0.002794 160 8.59 4.662E−07 115 0.96 3.806E−07
5 10 155 0.013286 129 5.53 8.415E−07 141 1.5 8.410E−07

Table 6. Ferrier polynomials: summary of Table 5.

wins with # solved to # solved to
respect to N f f ∗ < 10−6 f ∗ < 10−3

RedistProx 17 22 40

NCVXpenalty 34 42 46

CPU time expressed in seconds and f indicates the function value reached by the algorithm
when it stops. To compute the search direction, instead of solving directly problem (2.7) or
(2.8), we solve problem (5.4) by means of a bisection technique. To evaluate function φ,
we use the QP subroutine provided by the IBM ILOG CPLEX package (version 12.1).

Note that in our approach inexact solution of problem (5.4) is allowed. In fact all we need,
at each iteration, is a primal feasible solution (d̄, v̄, z̄) or (d̄, v̄) satisfying the conditions
dictated by Lemma 4.1, Lemma 4.5 and such that v̄ ≤ 0, whenever I− = ∅. Then, in order
to evaluate the behaviour of the code in terms of CPU time when problem (5.4) is solved
with different tolerances, we have considered two cases: in the first one we stop the bisection
procedure when |φ′| ≤ 10−6, while in the second case when |φ′| ≤ 10−2. We compare our
results with those obtained by the NCVX code [45].

For the starred test functions Colville1 and TR48, we have adopted a different setting
of some parameters, letting δ̄ = 10−5 for Colville1 and m = 0.8 for TR48. In Table
2, for each row the best N f -value has been underlined. The comparison with NCVX code
appears promising, because in about the half of the test functions (11 over 24), NCVXpenalty

performs better than NCVX in terms of number of function evaluations.As expected, solving
approximately the Lagrangean problem (5.4) (bisection tolerance 10−2) is in general faster
than the ‘exact’ case (bisection tolerance 10−6), giving sometimes better results also in
terms of number of function evaluations.

As for the Ferrier polynomials test problems, we report our results in Tables 3 and 5 (for
n = 1, . . . , 10). We compare our method with the one described in [29], which is based on
a local convexification of the objective function. The corresponding code is RedistProx and
in [29] six different tables of results are presented, based on different combinations of the
QP solver and of the bundle management adopted.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 19

The comparison is made both in terms of number of function evaluations and precision.
In particular, from among the six different implementations of [29], we report in Table 3
the best results obtained by RedistProx in terms of number of function evaluations, and in
Table 5 the best results in terms of the objective function value. For each row the best results
in terms of N f −value and precision are underlined, respectively, in Tables 3 and 5.

Note that for the two starred problems (k = 2 and n = 7, 10) our code fails due to
rounding errors in solving the QP subproblem.

A summary of Tables 3 and 5 is in Tables 4 and 6, respectively. In particular here, it is
synthesized the comparison between RedistProx and the best between the two implemen-
tations of NCVXpenalty. Generally speaking, RedistProx appears to work well in terms of
number of function evaluations, whereas NCVXpenalty offers a quite reliable behaviour
both in terms of number of function evaluations and precision.

Funding

This work has been partially supported by RFBR [grant number 13-07-12010].

References

[1] Astorino A, Fuduli A. Nonsmooth optimization techniques for semisupervised classification.
IEEE Trans. Pattern Anal. Machine Intel. 2007;29:2135–2142.

[2] Astorino A, Fuduli A, Gaudioso M. DC models for spherical separation. J. Global Optimiz.
2010;48:657–669.

[3] Astorino A, Fuduli A, Gaudioso M. Margin maximization in spherical separation. Comput.
Optimiz. Appl. 2012;53:301–322.

[4] Astorino A. Conic separation of finite sets. I. The homogeneous case. J. Convex Anal., to appear.
[5] Bergeron C, Moore G, Zaretzki J, Breneman C, Bennett K. Fast bundle algorithm for multiple

instance learning. IEEE Trans. Pattern Anal. Machine Intel. 2012;34:1068–1079.
[6] Le Thi HA, Le HM, Pham Dinh T, Van Huynh N. Binary classification via spherical separator

by DC programming and DCA. J. Global Optimiz. 2013;56: 1393–1407.
[7] AstorinoA, FuduliA, Gorgone E. Non-smoothness in classification problems. Optimiz. Methods

Softw. 2008;23:675–688.
[8] Bagirov AM, Rubinov AM, Soukhoroukova NV, Yearwood J. Unsupervised and supervised data

classification via nonsmooth and global optimization. TOP. 2003;11:1–75.
[9] Karmitsa N, Bagirov AM, Mäkelä M. Comparing different nonsmooth minimization methods

and software. Optimiz. Methods Softw. 2012;27:131–153.
[10] Astorino A, Frangioni A, Fuduli A, Gorgone E. A nonmonotone proximal bundle method with

(potentially) continuous step decisions. SIAM J. Optimiz. 2013;23:1784–1809.
[11] Astorino A, Frangioni A, Gaudioso M, Gorgone E. Piecewise-quadratic approximations in

convex numerical optimization. SIAM J. Optimiz. 2011;21:1418–1438.
[12] Daniilidis A, Sagastizábal C, Solodov M. Identifying structure of nonsmooth convex functions

by the bundle technique. SIAM J. Optimiz. 2009;20:820–840.
[13] DemyanovAV, FuduliA, Miglionico G.Abundle modification strategy for convex minimization.

Eur. J. Oper. Res. 2007;180:38–47.
[14] Fuduli A, Gaudioso M. Tuning strategy for the proximity parameter in convex minimization. J.

Optimiz. Theory Appl. 2006;130:95–112.
[15] Hou L, Sun W. On the global convergence of a nonmonotone proximal bundle method for convex

nonsmooth minimization. Optimiz. Methods Softw. 2008;23:227–235.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

20 A. Fuduli et al.

[16] Karas E, Ribeiro A, Sagastizábal C, Solodov M. A bundle-filter method for nonsmooth convex
constrained optimization. Math. Program. 2009;116:297–320.

[17] Nurminski EA. Separating plane algorithms for convex optimization. Math. Program. B.
1997;76:373–391.

[18] Sagastizábal C, Solodov M. An infeasible bundle method for nonsmooth convex constrained
optimization without a penalty function or a filter. SIAM J. Optimiz. 2006;16:146–169.

[19] Solodov MV. A bundle method for a class of bilevel nonsmooth convex minimization problems.
SIAM J. Optimiz. 2007;18:242–259.

[20] Gaudioso M, Giallombardo G, Miglionico G. An incremental method for solving convex finite
min–max problems. Math. Oper. Res. 2006;31:173–187.

[21] Gaudioso M, Giallombardo G, Miglionico G. On solving the lagrangian dual of integer programs
via an incremental approach. Comput. Optimiz. Appl. 2009;44:117–138.

[22] Kiwiel KC, Lemaréchal C. An inexact bundle variant suited to column generation. Math.
Program. 2009;118:177–206.

[23] NedicA, Bertsekas DP. The effect of deterministic noise in subgradient methods. Math. Program.
2010;125:75–99.

[24] Frangioni A. Generalized bundle methods. SIAM J. Optimiz. 2003;13:117–156.
[25] Mäkelä M. Survey of bundle methods for nonsmooth optimization. Optimiz. Methods Softw.

2002;17:1–29.
[26] Hiriart-Urruty JB, CLemaréchal 1993. Convex analysis and minimization algorithms. Vols. I–II.

Berlin: Springer-Verlag.
[27] Haarala N, Miettinen K, Mäkelä MM. Globally convergent limited memory bundle method for

large-scale nonsmooth optimization. Math. Program. 2007;109:181–205.
[28] Hare W, Sagastizábal C. Computing proximal points of nonconvex functions. Math. Program.

2009;116:221–258.
[29] Hare W, Sagastizábal C. A redistributed proximal bundle method for nonconvex optimization.

SIAM J. Optimiz. 2010;10:2442–2473.
[30] Karmitsa N, Mäkelä M. Adaptive limited memory bundle method for bound constrained large-

scale nonsmooth optimization. Optimization. 2010;59:945–962.
[31] Karmitsa N, Mäkelä M. Limited memory bundle method for large bound constrained nonsmooth

optimization: convergence analysis. Optimiz. Methods Softw. 2010;25:895–916.
[32] Noll D. Cutting plane oracles to minimize non-smooth non-convex functions. Set-Valued Variat.

Anal. 2010;18:531–568.
[33] Schramm H, Zowe J. A version of the bundle idea for minimizing a nonsmooth function:

conceptual idea, convergence analysis. SIAM J. Optimiz. 1992;1:121–152.
[34] Lewis AS, Overton ML. Nonsmooth optimization via quasi-Newton methods. Math. Program.

2013;141:135–163.
[35] Luksǎn L, Vlček J. A bundle-Newton method for nonsmooth unconstrained minimization. Math.

Program. 1998;83:373–391.
[36] Burke JB, Lewis AS, Overton ML. Approximating subdifferentials by random sampling of

gradients. Math. Oper. Res. 2002;27:567–584.
[37] Burke JV, Lewis AS, Overton ML. A robust gradient sampling algorithm for nonsmooth,

nonconvex optimization. SIAM J. Optimiz. 2005;15:751–779.
[38] Kiwiel KC. Convergence of the gradient sampling algorithm for nonsmooth nonconvex

optimization. SIAM J. Optimiz. 2007;18:379–388.
[39] Kiwiel KC. A nonderivative version of the gradient sampling algorithm for nonsmooth

nonconvex optimization. SIAM J. Optimiz. 2010;20:1983–1994.
[40] Bagirov AM, Karasozen B, Sezer M. Discrete gradient method: derivative-free method for

nonsmooth optimization. J. Optimiz. Theory Appl. 2008;137:317–334.
[41] Karmitsa N. Limited memory discrete gradient bundle method for nonsmooth derivative-free

optimization. Optimization. 2012;61:1491–1509.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

Optimization 21

[42] Apkarian P, Noll D, Prot O. A trust region spectral bundle method for nonconvex eigenvalue
optimization. SIAM J. Optimiz. 2008;19:281–306.

[43] Apkarian P, Noll D, Prot O.Aproximity control algorithm to minimize nonsmooth and nonconvex
semi-infinite maximum eigenvalue functions. J. Convex Anal. 2009;16:641–666.

[44] Fuduli A, Gaudioso M, Giallombardo G. A DC piecewise affine model and bundling technique
in nonconvex nonsmooth minimization. Optimiz. Methods Softw. 2004;19:89–102.

[45] FuduliA, Gaudioso M, Giallombardo G. Minimizing nonconvex nonsmooth functions via cutting
planes and proximity control. SIAM J. Optimiz. 2004;14:743–756.

[46] Gaudioso M, Gorgone E, Monaco MF. Piecewise linear approximations in nonconvex nonsmooth
optimization. Numer. Math. 2009;113:73–88.

[47] Cheney EW, Goldstein AA. Newton’s method for convex programming and Tchebycheff
approximation. Numer. Math. 1959;1:253–268.

[48] Kelley JE. The cutting-plane method for solving convex programs. J. SIAM. 1960;8:703–712.
[49] Frangioni A. Solving semidefinite quadratic problems within nonsmooth optimization

algorithms. Comput. Oper. Res. 1996;23:1099–1118.
[50] Kiwiel KC. A method for solving certain quadratic programming problems arising in nonsmooth

optimization. IMA J. Numer. Anal. 1986;6:137–152.
[51] Nurminski EA. Convergence of the suitable affine subspace method for finding the least distance

to a simplex. Comput. Math. Math. Phys. 2005;45:1915–1922.
[52] Nurminski EA. Projection onto polyhedra in outer representation. Comput. Math. Math. Phys.

2008;48:367–375.
[53] Kiwiel KC. An aggregate subgradient method for nonsmooth convex minimization. Math.

Program. 1983;27:320–341.
[54] Lukšan L 2000. Test problems for nonsmooth unconstrained and linearly constrained

optimization. Tech. Rep. 798. Prague: Institute of Computer Science, Academy of Sciences
of the Czech Republic.

[55] Ferrier C. Bornes duales de problémes d’optimisation polynomiaux [PhD thesis]. Toulose,
France: Laboratoire Approximation et Optimisation, Université Paul Sabatier; 1997.

D
ow

nl
oa

de
d

by
 [

U
ni

v
St

ud
i D

el
la

 C
al

ab
ri

a]
 a

t 0
6:

49
 3

0
Se

pt
em

be
r

20
13

