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Abstract. First, this paper introduces a notion of a sharp penalty map-
ping which can replace more common exact penalty function for convex
feasibility problems. Second, it uses it for solution of variational inequal-
ities with monotone operators or pseudo-varitional inequalities with ori-
ented operators. Appropriately scaled the sharp penalty mapping can be
used as an exact penalty in variational inequalities to turn them into
fixed point problems. Then they can be approximately solved by simple
iteration method.
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Introduction

Variational inequalities (VI) became one of the common tools for representing
many problems in physics, engineering, economics, computational biology, com-
puterized medicine, to name but a few, which extend beyond optimization, see
[1] for the extensive review of the subject. Apart from the mathematical prob-
lems connected with the characterization of solutions and development of the
appropriate algorithmic tools to find them, modern problems offer significant
implementation challenges due to their non-linearity and large scale. It leaves
just a few options for the algorithms development as it occurs in the others re-
lated fields like convex feasibility (CF) problems [2] as well. One of these options
is to use fixed point iteration methods with various attraction properties toward
the solutions, which have low memory requirements and simple and easily paral-
lelized iterations. These schemes are quite popular for convex optimization and
CF problems but they need certain modifications to be applied to VI problems.
The idea of modification can be related to some approaches put forward for
convex optimization and CF problems in [3–5] and which is becoming known as
superiorization technique (see also [6] for the general description).

From the point of view of this approach the optimization problem

min f(x), x ∈ X (1)

or VI problem to find x? ∈ X such that

F (x?)(x− x?) ≥ 0, x ∈ X (2)
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are conceptually divided into the feasibility problem x ∈ X and the second-
stage optimization or VI problems next. Then these tasks can be considered to a
certain extent separately which makes it possible to use their specifics to apply
the most suitable algorithms for feasibility and optimization/VI parts.

The problem is to combine these algorithms in a way which provides the
solution of the original problems (1) or (2). As it turns out these two tasks can
be merged together under rather reasonable conditions which basically require
a feasibility algorithm to be resilient with respect to diminishing perturbations
and the second-stage algorithm to be something like globally convergent over
the feasible set or its small expansions.

Needless to say that this general idea meets many technical difficulties one of
them is to balance in intelligent way the feasibility and optimization/VI steps.
If optimization steps are essentially ”smaller” than feasibility steps then it is
possible to prove general convergence results [3, 4] under rather mild conditions.
However it looks like that this requirements for optimization steps to be smaller
(in fact even vanishing compared to feasibility) slows down the overall optimiza-
tion in (1) considerably.

This can be seen in the text-book penalty function method for (1) which
consists in the solution of the auxiliary problem of the kind

min
x
{ΦX(x) + εf(x) } = ΦX(xε) + εf(xε) (3)

where ΦX(x) = 0 for x ∈ X and ΦX(x) > 0 otherwise. The term εf(x) can
be considered as the perturbation of the feasibility problem minx Φ(x) and for
classical smooth penalty functions the penalty parameter ε > 0 must tend to
zero to guarantee convergence of xε to the solution of (1). Definitely it makes
the objective function f(x) less influential in solution process of (1) and hinders
the optimization.

To overcome this problem the exact penalty functions ΨX(·) can be used
which provide the exact solution of (1)

min
x
{ΨX(x) + εf(x) } = εf(x?) (4)

for small enough ε > 0 under rather mild conditions. The price for the conceptual
simplification of the solution of (2) is the inevitable non-differentiability of the
penalty function ΨX(x) and the corresponding worsening of convergence rates
for instance for gradient-like methods (see [8, 9] for comparison). Nevertheless
the idea has a certain appeal, keeping in mind successes of nondiffereniable
optimization, and the similar approaches with necessary modifications were used
for VI problems starting from [10] and followed by [11–14] among others. In these
works the penalty functions were introduced and their gradient fields direct the
iterations to feasibility.

Here we suggest a more general definition of a sharp penalty mapping P :
E → C(E), not necessarily potential, which is oriented toward a feasible set (for
details of notations see the section 1). It also admits a certain problem-dependent
penalty constant λ > 0 such that the sum F + λP of variational operator F of
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(2) and P scaled by λ possesses a desirable properties to make the iteration
algorithm converge at least to a given neighborhood of solution of (2). In the
preliminary form this idea was suggested in [15] using a different definition of a
sharp penalty mapping which resulted in rather weak convergence result. Here
we show that it is possible to reach stronger convergence result with all limit
points of the iteration method being an ε-solutions of VI problem (2).

1 Notations and Preliminaries

Let E denotes a finite-dimensional space with the inner product xy for x, y ∈
E, and the standard Euclidean norm ‖x‖ =

√
xx. The one-dimensional E is

denoted as R and R∞ = R ∪ {∞}. The unit ball in E is denoted as B = {x :
‖x‖ ≤ 1}. The space of bounded closed convex subsets of E is denoted as C(E).
The distance function ρ(x,X) between point x and set X ⊂ E is defined as
ρ(x,X) = infy∈X ‖x− y‖. The norm of a set X is defined as ‖X‖ = supx∈X ‖x‖.

For any X ⊂ E its interior is denoted as int(X), the closure of X is denoted
as cl(X) and the boundary of X is denoted as ∂X = X \ int(X).

The sum of two subsets A and B of E is denoted as A+ B and understood
as A+B = {a+ b, a ∈ A, b ∈ B}. If A is a singleton {a} we write just a+B.

Any open subset of E containing zero vector is called a neighborhood of zero
in E. We use the standard definition of upper semi-continuity and monotonicity
of set-valued mappings:

Definition 1. A set-valued mapping F : E → C(E) is called upper semi-continuous
if at any point x̄ for any neighborhood of zero U there exists a neighborhood of
zero V such that F (x) ⊂ F (x̄) + U for all x ∈ x̄+ V .

Definition 2. A set-valued mapping F : E → C(E) is called a monotone if
(fx − fy)(x− y) ≥ 0 for any x, y ∈ E and fx ∈ F (x), fy ∈ F (y).

We use standard notations of convex analysis: if h : E → R∞ is a convex
function, then dom(h) = {x : h(x) < ∞}, epih = {(µ, x) : µ ≥ h(x), x ∈
dom(h)} ⊂ R× E, the sub-differential of h is defined as follows:

Definition 3. For a convex function h : E → R∞ a sub-differential of h at
point x̄ ∈ dom(h) is the set ∂h(x̄) of vectors g such that h(x)− h(x̄) ≥ g(x− x̄)
for any x ∈ dom(h).

This defines a convex-valued upper semi-continuous maximal monotone set-
valued mapping ∂h : int(dom(h)) → C(E). At the boundaries of dom(h) the
sub-differential of h may or may not exist. For differentiable h(x) the classical
gradient of h is denoted as h′(x).

We define the convex envelope of X ⊂ E as follows.

Definition 4. An inclusion-minimal set Y ∈ C(E) such that X ⊂ Y is called a
convex envelope of X and denoted as co(X).
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Our main interest consists in finding a solution x? of a following finite-
dimensional VI problem with a single-valued operator F (x):

Find x? ∈ X ⊂ C(E) such that F (x?)(x− x?) ≥ 0 for all x ∈ X. (5)

This problem has its roots in convex optimization and for F (x) = f ′(x) VI (5)
is the geometrical formalization of the optimality conditions for (1).

If F is monotone, then the pseudo-variational inequality (PVI) problem

Find x? ∈ X such that F (x)(x− x?) ≥ 0 for all x ∈ X. (6)

has a solution x? which is a solution of (5) as well. However it is not necessary
for F to be monotone to have a solution of (6) which coincides with a solution
of (5) as Fig. 1 demonstrates.

For simplicity we assume that both problems (5) and (6) has unique and
hence coinciding solutions.

To have more freedom to develop iteration methods for the problem (6) we
introduce the notions of oriented and strongly oriented mappings according to
the following definitions.

Definition 5. A set-valued mapping G : E → C(E) is called oriented toward x̄
at point x if

gx(x− x̄) ≥ 0 (7)

for any gx ∈ G(x).

Definition 6. A set-valued mapping G : E → C(E) is called strongly oriented
toward x̄ on a set X if for any ε > 0 there is γε > 0 such that

gx(x− x̄) ≥ γε (8)

for any gx ∈ G(x) and all x ∈ X \ {x̄+ εB}.

If G is oriented (strongly oriented) toward x̄ at all points x ∈ X then we will
call it oriented (strongly oriented) toward x̄ on X.

Of course if x̄ = x?, a solution of PVI problem (6), then G is oriented toward
x? on X by definition and the other way around.

The notion of oriented mappings is somewhat related to attractive mappings
introduced in [2], which can be defined for our purposes as follows.

Definition 7. A mapping F : E → E is called attractive with respect to x̄ at
point x if

‖F (x)− x̄‖ ≤ ‖x− x̄‖ (9)

It is easy to show that if F is an attractive mapping, then G(x) = F (x) − x is
an oriented mapping, however G(x) = −10x is the oriented mapping toward {0}
on [−1, 1] but neither G(x) nor G(x) + x are attractive.

Despite the fact that the problem (5) depends upon the behavior of F on X
only, we need to make an additional assumption about global properties of F
to avoid certain problems with possible divergence of iteration method due to
”run-away” effect. Such assumption is the long-range orientation of F which is
frequently used to ensure the desirable global behavior of iteration methods.
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Fig. 1. Non-monotone operator F (x) oriented toward x? = 0.
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Definition 8. A mapping F : E → E is called long-range oriented toward a set
X if there exists ρF ≥ 0 such that for any x̄ ∈ X

F (x)(x− x̄) > 0 for all x such that ‖x‖ ≥ ρF (10)

.

We will call ρF the radius of long-range orientation of F toward X.

2 Sharp Penalty Mappings

In this section we present the key construction which makes possible to reduce
an approximate solution of VI problem into calculation of the limit points of
iterative process, governed by strongly oriented operators.

For this purpose we modify slightly the classical definition of a polar cone of
a set X.

Definition 9. The set KX(x) = {p : p(x − y) ≥ 0 for all y ∈ X} we will call
the polar cone of X at a point x.

Of course KX(x) = {0} if x ∈ intX.
For our purposes we need also a stronger definition which defines a certain

sub-cone of KX(x) with stronger pointing toward X.

Definition 10. Let ε ≥ 0 and x /∈ X + εB. The set

Kε
X(x) = {p : p(x− y) ≥ 0 for all y ∈ X + εB} (11)

will be called ε-strong polar cone of X at x.

As it is easy to see that the alternative definition of Kε
X(x) is Kε

X(x) = {p :
p(x− y) ≥ ε‖p‖ for all y ∈ X.}

To define a sharp penalty mapping for the whole space E we introduce a
composite mapping

K̃ε
X(x) =

{0} if x ∈ X
KX(x) if x ∈ cl{{X + εB} \X}
Kε
X(x) if x ∈ ρFB \ {X + εB}

(12)

Notice that K̃ε
X(x) is upper semi-continuous by construction.

Now we define a sharp penalty mapping for X as

P εX(x) = {p ∈ K̃ε
X(x), ‖p‖ = 1}. (13)

Clear that P εX(x) is not defined for x ∈ int{X} but we can defined it to be equal
to zero on int{X} and take a convex envelope of P εX(x) and {0} at the boundary
of X to preserve upper semi-continuity.

For some positive λ define Fλ(x) = F (x)+λP εX(x). Of course by construction
Fλ(x) is upper semi-continuous for x /∈ X.

For the further development we establish the following result on construction
of an approximate globally oriented mapping related to the VI problem (5).
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Lemma 1. Let X ⊂ E is closed and bounded, F is monotone and long-range
oriented toward X with the radius of orientability ρF and strongly oriented to-
ward solution x? of (5) on X with the constants γε > 0 for ε > 0, satisfying
(8) and P εX(·) is a sharp penalty (13). Then for any sufficiently small ε > 0
there exists λε > 0 and δε > 0 such that for all λ ≥ λε a penalized mapping
Fλ(x) = F (x) + λP εX(x) satisfies the inequality

fx(x− x?) ≥ δε (14)

for all x ∈ ρFB \ {x? + εB} and any fx ∈ Fλ(x).

Proof For monotone F we can equivalently consider a pseudo-variational in-
equality (6) with the same solution x?. Define the following subsets of E:

X
(1)
ε = X \ {x? + εB},

X
(2)
ε = {{X + εB} \X} \ {x? + εB},

X
(3)
ε = ρFB \ {{X + εB} \ {x? + εB}}.

(15)

Correspondingly we consider 3 cases.

Case A. x ∈ X(1)
ε . In this case fλ(x) = F (x) and therefore

fλ(x)(x− x?) = F (x)(x− x?) ≥ γε > 0. (16)

Case B. x ∈ X(2)
ε . In this case fλ(x) = F (x)+λpX(x) where pX(x) ∈ KX(x), ‖pX(x)‖ =

1 and therefore

fλ(x)(x− x?) = F (x)(x− x?) + λpX(x)(x− x?) ≥ γε/2 > 0. (17)

as λpX(x)(x− x?) > 0 by construction.

Case C. x ∈ X(3)
ε . In this case fλ(x) = F (x)+λpX(x) where pX(x) ∈ Kε

X(x), ‖pX(x)‖ =
1. By continuity of F the norm of F is bounded on ρFB by some M and as P εX(·)
is ε-strong penalty mapping

fλ(x)(x− x?) = F (x)(x− x?) + λpX(x)(x− x?) ≥
−M‖x− x?‖+ λε ≤ −2ρFM + λε ≥ ρFM > 0

(18)

for λ ≥ ρFM/ε.
By combining all three bounds we obtain

fλ(x)(x− x?) ≥ min{γε/2, ρFM} = δε > 0 (19)

for λ ≥ Λε = ρFM/ε which completes the proof.
The elements of a polar cone for a given set X can be obtained by different

means. The most common are either by projection onto set X:

x−ΠX(x) ∈ KX(x) (20)
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where ΠX(x) ∈ X is the orthogonal projection of x on X, or by subdifferential
calculus when X is described by a convex inequality X = {x : h(x) ≤ 0}. If
there is a point x̄ such that h(x̄) < 0 ( Slater condition) then h(y) < 0 for all
y ∈ int{X}. Therefore 0 < h(x) − h(y) ≤ gh(x)(x − y) for any y ∈ int{X}.
By continuity 0 < h(x) − h(y) ≤ gh(x)(x − y) for all y ∈ X which means that
gh ∈ KX(x).

One more way to obtain gh ∈ KX(x) relies on the ability to find some
xc ∈ int{X} and use it to compute Minkowski function

µX(x, xc) = inf
θ≥0
{θ : xc + (x− xc)θ−1 ∈ X} > 1 for x /∈ X. (21)

Then by construction x̄ = xc + (x− xc)µX(x, xc)−1 ∈ ∂X, i.e. h(x̄) = 0 and for
any gh ∈ ∂h(x̄) the inequality ghx̄ ≥ ghy holds for any y ∈ X.

By taking y = xc obtain ghx̄ ≥ ghxc and therefore

ghx̄ = ghx
c + gh(x− xc)µX(x, xc)−1 = µX(x, xc)−1ghx+ (1− µX(x, xc)−1)ghx

c ≤
µX(x, xc)−1ghx+ (1− µX(x, xc)−1)ghx̄.

(22)
Hence ghx ≥ ghx̄ ≥ ghy for any y ∈ X, which means that gh ∈ KX(x).

As for ε-expansion of X it can be approximated from above (included into)
by the relaxed inequality X + εB ⊂ {x : h(x) ≤ Lε} where L is a Lipschitz
constant in an appropriate neighborhood of X.

3 Iteration Algorithm

After construction of the mapping Fλ, oriented toward solution x? of (6) at the
whole space E except ε-neighborhood of x? we can use it in an iterative manner
like

xk+1 = xk − θkfk, fk ∈ Fλ(xk), k = 0, 1, . . . , (23)

where {θk} is a certain prescribed sequence of step-size multipliers, to get the
sequence of {xk}, k = 0, 1, . . . which hopefully converges under some conditions
to to at least the set Xε = x? + εB of approximate solutions of (5).

For technical reasons, however, it would be convenient to guarantee from the
very beginning the boundedness of {xk}, k = 0, 1, . . .. Possibly the simplest way
to do so is to insert into the simple scheme (23) a safety device, which enforces
restart if a current iteration xk goes too far. This prevents the algorithm from
divergence due to the ”run away” effect and it can be easily shown that it keeps
a sequence of iterations {xk} bounded.

Thus the final form of the algorithm is shown as the figure Algorithm 1,
assuming that the set X, the operator F and the sharp penalty mapping P εX
satisfy conditions of the lemma 1. We prove convergence of the algorithm 1 under
common assumptions on step sizes: θk → +0 when k → ∞ and

∑K
k=1 θk → ∞

when K → ∞. This is not the most efficient way to control the algorithm, but
at the moment we are interested mostly in the very fact of convergence.
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Data: The variational inequality operator F , sharp penalty mapping PX ,
positive constant ε, penalty constant λ which satisfy conditions of the
Lemma 1, long-range orientation radius ρF , a sequence of step-size
multipliers {0 < θk, k = 0, 1, 2, . . . }. and an initial point x0 ∈ ρFB.

Result: The sequence of approximate solutions {xk} where every converging
sub-sequence has a limit point which belongs to a set Xε of ε-solution
of variational inequality (5).

Initialization;
Define penalized mapping

Fλ(x) = F (x) + λPX(x), (24)

and set the iteration counter k to 0;
while The limit is not reached do

Generate a next approximate solution xk+1:

xk+1 =

{
xk − θkfk, fk ∈ Fλ(xk), if ‖xk‖ ≤ 2ρF
x0 otherwise.

(25)

Increment iteration counter k −→ k + 1;

end

Complete: accept {xk}, k = 0, 1, . . . as a solution of (5). a

Algorithm 1: The generic structure of a conceptual version of the iteration
algorithm with exact penalty.

a The exact meaning of this will be clarified in the convergence theorem 1.
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Theorem 1. Let ε > 0, Λε, F, PX satisfy the assumptions of the Lemma 1, λ >
Λε, and θk → +0 when k → ∞ and

∑K
k=1 θk → ∞ when K → ∞. Then all

limit points of the sequence {xk} generated by the algorithm 1 belong to the set
of ε-solutions Xε = x? + εB of the problem (5).

Proof We show first the boundedness of the sequence {xk}. To do so it is
sufficient to demonstrate that the sequence {‖xk‖, k = 1, 2, . . . } crosses the
interval [ρF , 2ρF ] a finite number of times only (any way, from below or from
above). Show first that the sequence {xk} leaves the set 3

2ρFB a finite number
of times only. Define ( a finite or not ) set T of indices T = {tk, k = 1, 2, . . . }
such that

‖xτ‖ < 3

2
ρF and ‖xτ+1‖ ≥ 3

2
ρF . (26)

If τ ∈ T then

‖xτ+1‖2 = ‖xτ − θkFΛ(xτ )‖2 = ‖xτ‖2 − 2θτf
τxτ + θ2τ‖fτ‖2 ≤

‖xτ‖2 − 2θτf
τxτ + θ2τC

2 ≤ ‖xτ‖2 − 2θτγδ + θ2τC
2,

(27)

where C is an upper bound for ‖Fλ(x)‖ with x ∈ 2ρFB and γ > 0 is a lower
bound for fτx for x ∈ 2ρFB and fτ ∈ Fλ(x). For τ large enough θτ < γC−2

and hence
‖xτ+1‖2 ≤ ‖xτ‖2 − θτδ < ‖xτ‖2 (28)

which contradicts the definition of the set T . Therefore T is a finite set and the
sequence {xk} leaves the set 3

2ρFB a finite number of times only which proves
the boundedness of {xk}.

Define now W (x) = ‖x − x?‖2 and notice that due to the boundedness of
{xk} and semi-continuity of Fλ(x) and etc, W (xk+1)−W (xk)→ 0 when k →∞.
It implies that the limit set

W? = {w? : the sub-sequence {xks} exists such that lim
s→∞

W (xks) = w?} (29)

is a certain interval [wl?, w
u
? ] ⊂ R+ and the statement of the theorem means that

wu? ≤ ε2.
To prove this we assume contrary, that is wu? > ε2 and hence there exists a

sub-sequence {xks , s = 1, 2, . . . } such that lims→∞W (xks) = w′ > ε2. Without
loss of generality we may assume that lims→∞ xks = x′ and of course x′ /∈ Xε.
Therefore f ′(x′−x?) > 0 for any f ′ ∈ Fλ(x′) and by upper semi-continuity of Fλ
there exists an υ > 0 such that Fλ(x)(x−x?) ≥ δ for all x ∈ x′+ 4υB and some
δ > 0. Again without loss of generally we may assume that υ < (

√
w′ − ε)/4 so

(x′ + 4υB) ∩ (x? + εB) = ∅.
For for s large enough xks ∈ x′ + υB and let us assume that for all t > ks

the sequence {xt, t > ks} ⊂ xks + υB ⊂ x′ + 2υB.
Then

W (xt+1) = ‖xt − θtFλ(xt)− x?‖2 = W (xt)− 2θtFλ(xt)(xt − x?) + θ2t ‖Fλ(xt)‖2 ≤
W (xt)− 2θtFλ(xt)(xt − x?) + θ2tC

2 ≤W (xt)− 2θtδ + θ2tC
2 < W (xt)− θtδ,

(30)
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for all t > ks and s large enough that supt>ks θt < δ/C2. Summing up last
inequalities from t = ks to t = T − 1 obtain

W (xT ) ≤W (xks)− δ
T−1∑
t=ks

θt → −∞ (31)

when T →∞ which is of course impossible.
Hence for each ks there exists rs > ks such that ‖xks −xrs‖ > υ > 0 Assume

that rs is in fact a minimal such index, i.e. ‖xks − xt‖ ≤ υ for all t such that
ks < t < rs or xt ∈ xtk + υB ⊂ x′ + 2υB for all such t. Without any loss of
generality we may assume that xrs → x′′ where by construction ‖x′−x′′‖ ≥ υ > 0
and therefore x′ 6= x′′.

As all conditions which led to (31) hold for T = rs then by letting T = rs we
obtain

W (xrs) ≤W (xks)− δ
rs−1∑
t=ks

θt. (32)

On the other hand

υ < ‖xks − xrs‖ ≤
rs∑
t=ks

‖xt+1 − xt‖ ≤
rs−1∑
t=ks

θt‖Fλ(xt)‖ ≤ K
rs∑
t=ks

θt (33)

where K is the upper estimate of the norm of Fλ(x) on 2ρFB.

Therefore
∑rs−1
t=ks

θt > υ/K > 0 and finally

W (xrs) ≤W (xks)− δυ/K. (34)

Passing to the limit when s→∞ obtain W (x′′) ≤W (x′)− δυ/K < W (x′) Also
W (x′′) > ε2 as x′′ ∈ x′+ 4υB which does not intersect with x? + εB. To save on
notations denote W (x′) = w′ and W (x′′) = w′′.

In other words, assuming that w′ > ε2 we constructed another limit point
w′′ of the sequence {W (xk)} such that ε2 < w′′ < w′. It follows from this that
the sequence {W (xk)} infinitely many times crosses any sub-interval [w̃′′, w̃′] ⊂
(w′′, w′) both in ”up” and ”down” directions and hence there exist sub-sequences
{ps, s = 1, 2, . . . } and {qs, s = 1, 2, . . . } such that ps < qs and

W (xps) ≤ w̃′′,W (xqs) ≥ w̃′,W (xt) ∈ (w′′, w′) for ps < t < qs (35)

Then

0 < W (xqs)−W (xps) =

qs−1∑
t=ps

(W (xt+1)−W (xt)) (36)

and hence for any s there is an index ts : ps < ts < qs such that

0 < W (xts+1)−W (xts). (37)
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However as W (xts) > w′′, xts /∈ x? + εB and therefore

W (xts+1)−W (xts) = ‖xts+1 − x?‖2 − ‖xts − x?‖2 =
‖xts − x? + θtsf

ts‖2 − ‖xts − x?‖2 =
2θtsf

ts(xts − x?) + θ2ts‖f
ts‖2 = θts(2f ts(xts − x?) + θts‖f ts‖2),

(38)

where f ts ∈ Fλ(xts). Notice that f ts(xts − x?) < −δ > 0 and ‖f ts‖2 ≤ C. Using
these estimates we obtain

W (xts+1)−W (xts) ≤ θts(−2δ − θtsC) ≤ −θtsδ < 0 (39)

for all s large enough. This contradicts (37) and therefore proves the theorem.

Conclusions

In this paper we define and use a sharp penalty mapping to construct the itera-
tion algorithm converging to an approximate solutions of monotone variational
inequalities. Sharp penalty mappings are analogues of gradient fields of exact
penalty functions but do not need to be potential mappings. Three examples of
sharp penalty mappings are given with one of them seems to be a new one. The
algorithm consists in recursive application of a penalized variational inequal-
ity operator, but scaled by step-size multipliers which satisfy classical diverging
series condition. As for practical value of these result it is generally believed
that the conditions for the step-size multipliers used in this theorem result in
rather slow convergence of the order O(k−1). However the convergence rate can
be improved by different means following the example of non-differentiable op-
timization. The promising direction is for instance the least-norm adaptive reg-
ulation, suggested probably first by A.Fiacco and McCormick [16] as early as
1968 and studied in more details in [17] for convex optimization problems. With
some modification in can be easily used for VI problems as well. Experiments
show that under favorable conditions it produces step multipliers decreasing as
geometrical progression which gives a linear convergence for the algorithm. This
may explain the success of [7] where geometrical progression for step multipliers
was independently suggested and tested in practice.
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