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Abstract. This paper presents an extended version of the separation
plane algorithm for subgradient-based finite-dimensional nondifferentiable
convex optimization. The extension introduces additional cuts for epi-
graph of the conjugate of objective function which improve the conver-
gence of the algorithm. The case of affine cuts is considered in more
details and it is shown that it requires solution of an auxiliary convex
subproblem the dimensionality of which depends on the number of ad-
ditional cuts and can be kept arbitrary low. Therefore algorithm can
make use of the efficient algorithms of low-dimensional nondifferentiable
convex optimization which overcome known computational complexity
bounds for the general case.
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Introduction and Notations

We consider a finite-dimensional nondifferentiable convex optimization (NCO)
problem

min
x∈E

f(x) = f? = f(x?), x? ∈ X? , (1)

where E denotes a finite-dimensional space of primal variables and f : E → R
is a finite convex function, not necessarily differentiable. As we are interested in
computational issues related to solving (1) mainly we assume that this problem
is solvable and has nonempty set of solutions X?.

This problem enjoys a considerable popularity due to its important theoreti-
cal properties and numerous applications in large-scale structured optimization,
Lagrange relaxation in discrete optimization, exact penalization in constrained
optimization, and others. This led to the development of different algorithmic
ideas, starting with the subgradient algorithm due to Shor [1] and Polyak [2] and
followed by cutting plane [3], conjugate subgradient [4], bundle methods [13],
ellipsoid and space dilatation [5–7], ε-subgradient methods [8, 9], V U -methods
[10] and many others. This paper describes an extended version of the sepa-
ration plane algorithm (SPA) [14] which differs from the original idea in that
it introduces several additional cuts for epigraph of the conjugate of objective
function. The simplest form of SPA with just one additional cut was considered
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in all details including computational experiments in [15–17]. The positive ex-
perience with this algorithm raised some hopes that introduction of more cuts
will improve the computational efficiency further on.

Throughout the paper we use the following notations: dim(E) is the dimen-
sionality of E, |I| is the cardinality of a finite set I, xy is the inner product of
x, y from E, ‖x‖ =

√
xx. The set of nonnegative vectors of E is denoted as E+

or En+ if the dimensionality n of E has to be specified.
We use also the distance function dist(X,Y ) = infx∈X,y∈Y ‖x−y‖ = dist(Y,X)

between X ⊂ E, Y ⊂ E. If X is a singleton {x} we will write just dist(x, Y ).
A vector of ones of a suitable dimensionality is denoted by e = (1, 1, . . . , 1).

A standard simplex {x : x ≥ 0, xe = 1} with x ∈ E,dim(E) = n is denoted by
∆n.

1 Separating Plane Algorithms

One of the ways to represent the popular bundle [13] and the other methods of
NCO is to view them as a projection algorithms for computing

f?(0) = −min
x
f(x) = −f? = − inf

(0,µ)∈epi f?
µ ,

where f?(g) = supx{xg − f(x)} is a Fenchel-Moreau conjugate of f , epi f? =
{(g, µ‘) : µ ≥ f?(g)} ⊂ E?×R is the epigraph of f?(g), and g ∈ E?, the space of
conjugate variables (gradients). This idea, presented originally in [14], unifies a
number of known NCO techniques and suggests some new computational ideas.

The general idea of SPA is to bound the epigraph epi f? of the conjugate
function f? from below and above (in terms of set-theoretical inclusion) by the
approximations Lf and Uf :

Lf ⊂ epi f? ⊂ Uf .

These approximations provide lower and upper estimates for f?(0):

inf
(0,µ)∈Uf

µ = vU ≤ −f?(0) ≤ inf
(0,µ)∈Lf

µ = vL (2)

and are gradually refined in the vicinity of the vertical axis {0} × R ⊂ E? × R
to make at least one of vU or vL converge to f?(0).

The iterations of SPA consist in recursive application of the update procedure
to Lf and Uf which is given in more details further on. This procedure is based
on computed values of conjugate function f? at certain points of the conjugate
space, determined by the procedure itself. As a result at k-th iteration of SPA
we have the bundle of accumulated information on epi f? which consists of pairs
of conjugate variables and values of conjugate function at these points. This
bundle will be denoted as B?I = {(gi, f?(gi)), i ∈ I} where I = {1, 2, . . . , k} and
gi, f?(gi) are conjugate variables and the value of conjugate function, computed
at i-th iteration. In other words B?I contains all information available up to the
current iteration k, however some selection can be performed to save memory.
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For technical reasons we assume also that B?I contains a special pair (0, α)
with α > f?(0). In terms of the original problem (1) it means that we assume a
certain lower bound −α for f? to be known. It may be a very crude estimate and
introduced mainly for formal reasons, but it is necessary to avoid in a simplest
way certain ill-defined subproblems in the algorithm. Notice that by construction
(0, α) ∈ epi f?.

The points in the bundle B?I have their natural counterparts {(xi, f(xi)), i ∈
I} in the extended space of primal variables E × R with gi ∈ ∂f(xi), f?(gi) =
xigi − f(xi). In fact the algorithms based on the bundle B?I can be considered
as based on the primal bundle BI = {(xi, f(xi)), i ∈ I} and operating on the
primal variables and the original objective function. Notice that the bundle BI
provides information on the support function of epi f?, that is the hyperplane

Pi = {(g, µ) : gx̂i − µ = f(x̂i) = sup
(g,µ)∈epi f?

{gx̂i − µ}} (3)

is a supporting plane of epi f? at the point (gi, f?(gi)).
Due to convexity the natural way to construct Lf and Uf is to use the inner

and outer approximations:

Lf = co{(gi, f?(gi)), i ∈ I}+ {0} × R+ ⊂ epi f? (4)

and

Uf = ∩Hi, i ∈ I ⊃ epi f? (5)

where

Hi = {(g, µ) : µ ≥ f?(gi) + xi(g − gi), xi ∈ ∂(gi)} ⊃ epi f?

are the half-spaces, generated by supporting planes Pi (3) to epi f? at the points
(gi, f?(gi)).

The general scheme to update Lf and Uf at k-th iteration with I = {1, 2, . . . , k}
is described in the Algorithm 1.

For better understanding the sequence of major steps in the update process
is illustrated on Fig. 1–4.

From computational point of view the separating plane Hx̂ in the Step 2
(Separate) can be obtained for the finite value of vU by solving the projection
problem

min
(z,µ)∈Lf?

‖z‖2 + (vU − µ)2 = ‖ẑ‖2 + (vU − µ̂)2 (7)

and appropriate normalization: x̂ = −ẑ/(vU − µ̂).
The Support step of the algorithm is just the computation of the objective

function and its subgradient at the point x̂ as demonstrated by (3).
Notice that after the update of Uf in any way we obtain a new upper estimate

for f? which is not worse that the previous:

v′U = inf
(0,µ)∈Uf∩S?

x̂

µ ≥ max{ inf
(0,µ)∈Uf

µ, inf
(0,µ)∈S?

x̂

µ} = max{vU ,−f(x̂)} ≥ vU
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Data: The bundle B?I , the upper and low approximations Uf , Lf of epi f?.
Result: The updated: set I, approximations Lf , Uf and the bundle B?f .
Step 1. Estimate: estimate the lower bound for f?(0). Compute

vU = inf
(0,µ)∈Uf

µ ≤= inf
(0,µ)∈epi f?

µ = f?(0) .

It can be set to −∞ if Uf is taken to be the trivial upper approximation
E × R at the start of SPA.

Step 2. Separate: strictly separate (0, vU ) from Lf with a separating plane
Sx̂ = {(g, µ) : gx̂− µ = −v̂U}, parameterized by the support vector (x̂,−1)
and v̂U to be found. If vU = −∞ just take an arbitrary x̂. If strict
separability is impossible, that is v̂U = f?(0) = −f?, then we are done,
otherwise continue.

Step 3. Support: for a given x̂, found at the previous step, find the
supporting hyperplane P ?x̂ for epi f?:

P ?x̂ = {(g, µ) : gx̂− µ = sup(g,ε)∈epi f?{x̂g − ε} =

supg{x̂g − f?(g)} = x̂ĝ − f?(ĝ) = f(x̂)} (6)

with ĝ ∈ ∂f(x̂). Notice, that this is just the calculation of f(x̂) and ĝ ∈ ∂f(x̂).
The hyperplane P ?x̂ defines the ”upper” half-space H?

x̂ which contains epi f?:

H?
x̂ = {(g, µ) : µ ≥ gx̂− f(x̂)} ⊃ {(g, µ) : µ ≥ supx{gx− f(x)}} =

{(g, µ) : µ ≥ f?(g)} = epi f?

and hence H?
x̂ can be safely added to the cuts of the upper approximation Uf .

Step 4. Update: perform the update of the basic data structures of SPA:
the bundle: B?I → B?I ∩ {(ĝ, f?(ĝ)},
the approximations: redefine Lf and Uf according to (4) and (5)

Lf → co(Lf , (ĝ, ε̂)), Uf → Uf ∩ S?x̂

the index set: I → I ∪ {k + 1}.

Algorithm 1: The generic structure of update step for the upper and
low approximations of epi f?
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Lf

UfvU

epif ∗

µ

f ∗(0)

Fig. 1. Basic algorithm objects:
Lf , Uf are lower and upper ap-
proximations, vU approximates
f?(0) from below.

Lf

vU

µ

f ∗(0)

Fig. 2. Projection: determines
the (normalized) vector (x̂,−1)
such that gx̂ − µ ≤ −vU for any
(g, µ) ∈ epi f?.

Lf

vU

epif ∗

µ

f ∗(0)

Fig. 3. Support: compute
sup(g,µ)∈epi f?{x̂g − µ} = f(x̂) and
the corresponding subgradient
ĝ ∈ ∂f(x̂).

Lf

Uf

vU

epif ∗

µ

f ∗(0)

Fig. 4. Update: the lower Lf
and the upper Uf approximations
are updated with the help of a
new (g, f?(g)) and cutting support
plane at (g, f?(g)).



6 Multiple cuts in separating plane algorithms

and may be better if f(x̂) sets a new record. Unfortunately we can not guarantee
that this will be just the case and so the algorithm is not monotone in terms
of the objective function. This may be one of the factors which slows down the
practical convergence of SPA, and it seems to be possible to improve it by adding
an additional cut or cuts on epi f?.

That was the original idea, tested with positive results in [15, 16] when just
the single extra cut generated by the auxiliary subproblem of cutting plane
method was added. Here we consider some aspects of adding several extra cuts.

2 Multiple Additional Cuts

From the formal point of view the additional cuts for epi f? can be considered
as a a certain subset Q of E×R which is superimposed on epi f?. It means that
now instead of epi f? in the Support step of the Algorithm 1. we are going to
use epi f? ∩Q

In this case a new supporting hyperplane H̄?
x̂ = {(g, µ) : gx̂ − µ = µ̄} will

have µ̄ ≥ µ̂:

−µ̄ = sup
(g,µ)∈epi f?∩Q

{gx̂− µ} ≤ sup
(g,µ)∈epi f?

{gx̂− µ} = −µ̂ = f(x̂)

and therefore we have a better chance to improve v′U :

v̄′U = max{vU , µ̄} ≥ max{vU , µ̂} = v′U

There is a great flexibility in the choice of Q, the only essential requirement is
to ensure that the solution (0,−f?) still belongs to epi f? ∩Q.

The updated iteration of the separating plane algorithms with cuts is repre-
sented in Algorithm 2.

From practical point of view it is convenient to have Q described by a system
of convex inequalities Q = {(g, µ) : hi(g, µ) ≤ 0, i = 1, 2, . . . ,m}, each of which
can be considered as a separate cut, applied to epi f?. Therefore we call this type
of algorithms as separating plane algorithm with multiple cuts (SPA-MC).

In the simplest case all hi(g, µ) are affine functions:

hi(g, µ) = x̂ig + µ− µ̄i , (9)

where x̂i represent some trial points in the space of the original primal variables.
The support problem of the Step 3 in SPA-MC for the case of affine cuts

can be written as
wU = sup{xg − µ]

µ ≥ f?(g)
x̂ig + µ ≤ µ̄i, i = 1, 2, ,̇m

(10)

which can be transformed into the dual form

wU = sup
µ ≥ f?(g)

inf
λ ≥ 0

{xg − µ−
m∑
i=1

λi(x̂
ig + µ− µ̄i)} , (11)
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Data: The bundle B?I , the upper and low approximations Uf , Lf of epi f?,
and the cut Q ⊂ E × R.

Result: The updated index set I, approximations Lf , Uf and the bundle B?f .
Step 1. Estimate: Unchanged.
Step 2. Separate: Unchanged.
Step 3. Support: Modified to include the cut Q. For a given x̂, found at the
previous step, find the supporting hyperplane H?

x̂ for epi f? ∩Q:

H?
x̂ = {(g, µ) : gx̂− µ = sup

(g, ε) ∈ epi f?

(g, ε) ∈ Q

{x̂g − ε}} . (8)

The details of these calculations depend upon the definition of the cut set Q
and are discussed further on.
The hyperplane H?

x̂ defines the ”upper” half-space S?x̂ which contains epi f?:

S?x̂ = {(g, µ) : µ ≥ gx̂− f(x̂)} ⊃ {(g, µ) : µ ≥ supx{gx− f(x)}} =
{(g, µ) : µ ≥ f?(g)} = epi f?

and hence S?x̂ can be safely added to the cuts of the upper approximation Uf .
Step 4. Update: Unchanged.

Algorithm 2: The generic structure of update step for the upper and
low approximations of epi f? in SPA with multiple cuts.

where λ = (λ1, λ2, . . . , λm) is a nonnegative vector of Lagrange multipliers.
By convexity

wU = inf
λ ≥ 0

sup
µ ≥ f?(g)

{xg − µ−
∑m
i=1 λi(x̂

ig + µ− µ̄i)} =

inf
λ ≥ 0

{
∑m
i=1 λiµ̄i + sup

µ ≥ f?(g)
{(x−

∑m
i=1 λix̂

i)g − (1 +
∑m
i=1 λi)µ)} =

inf
λ ≥ 0

{
∑m
i=1 λiµ̄i + (1 +

∑m
i=1 λi) sup

µ ≥ f?(g)
{
x−

∑m
i=1 λix̂

i

1 +
∑m
i=1 λi

g − µ)}} =

inf
λ ≥ 0

{
∑m
i=1 λiµ̄i + (1 +

∑m
i=1 λi) sup

g
{
x−

∑m
i=1 λix̂

i

1 +
∑m
i=1 λi

g − f?(g)} =

inf
λ ≥ 0

{
∑m
i=1 λiµ̄i + (1 +

∑m
i=1 λi)f(

x−
∑m
i=1 λix̂

i

1 +
∑m
i=1 λi

)} = inf
λ ≥ 0

Ξ(λ) ,

where

Ξ(λ) =

m∑
i=1

λiµ̄i + (1 +

m∑
i=1

λi)f(
x−

∑m
i=1 λix̂

i

1 +
∑m
i=1 λi

)

has a controllable dimensionality m which is determined by the number of ad-
ditional cuts and can be set to any value.

Therefore Ξ(λ) can be minimized by specific algorithms, tailored to this par-
ticular dimensionality. An appropriate example of such algorithms is the cen-
ter of gravity method (CGM) by Levin [11] and Newmann [12] which is easily
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implemented at least in 2-dimensional case and provides a geometric rate of
convergence independent of properties of objective function and feasibility set.
Hopefully the efficient and practical methods may appear or already exist, un-
known to the author, in higher dimensions.

The essential part of Ξ(λ) which may create different problems with the
following minimization is the nonlinear term (1+

∑m
i=1 λi)f((x−

∑m
i=1 λix̂

i)/(1+∑m
i=1 λi)). Fortunately it inherits a convexity of the original problem which

follows from its definition as a supremum of linear forms in λ. Nevertheless it is
useful for the further maximization to consider the nonlinear part of Ξ(λ) as a
generic function

φ(θ) =

(
m∑
i=1

θi

)
f

(∑m
i=1 θix̂

i∑m
i=1 θi

)
(12)

for θ = (θ1, θ2, . . . , θm) ∈ Em+ and θ 6= 0. It makes sense to complement the
definition of φ(·) at 0 as φ(0) = 0 without loosing the continuity. Then φ becomes
defined on the whole Em+ and its convexity properties are covered by the following
lemma which might be of a separate interest.

Lemma 1. Let f : E → R is a convex finite function, x̂i, i = 1, 2, ...m —
a collection of m points in E, and θ = (θ1, θ2, . . . , θm) ∈ Em+ — a vector of
nonnegative variables. Then φ(θ) defined by (12) is a convex function of θ on
Em+ .

Proof. Denote
∑m
i=1 θi = σ(θ). Then

φ(θ) = σ(θ)f

(
(

m∑
i=1

θix̂
i)/σ(θ)

)

for σ(θ) > 0 and φ(0) = 0 by definition. Let α ∈ [0, 1] and θ′, θ′′ ∈ Em+ . Next we
show that φ(·) satisfies the Jensen inequality φ(αθ′+ (1−α)θ′′) ≤ αφ(θ′) + (1−
α)φ(θ′′).

Notice first, that φ is positive homogeneous of degree 1: φ(νθ) = νφ(θ) for
ν ≥ 0 hence the case when either θ′ = 0 or θ′′ = 0 is trivial.

Assume further on that σ(θ′)σ(θ′′) > 0. Let us fix α and denote κ = ασ(θ′)+
(1− α)σ(θ′′) > 0. Then

φ(αθ′ + (1− α)θ′′) = κf
(
(α
∑m
i=1 θ

′
ix
i + (1− α)

∑m
i=1 θ

′′
i x

i)/κ
)

=
κf
(
α(
∑m
i=1 θ

′
ix
i)/κ+ (1− α)(

∑m
i=1 θ

′′
i x

i)/κ
)

=

κf

(
α

∑m
i=1 θ

′
ix
i

σ(θ′)

σ(θ′)

κ
+ (1− α)

∑m
i=1 θ

′′
i x

i

σ(θ′′)

σ(θ′′)

κ

)
= κf(γ′x̄′ + γ′′x̄′′) ,

where
γ′ = ασ(θ′)/κ , γ′′ = ασ(θ′′)/κ ,

and

x̄′ =

m∑
i=1

θ′ix
i/σ(θ′) , x̄′′ =

m∑
i=1

θ′′i x
i/σ(θ′′) ,
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As γ′ + γ′′ = ασ(θ′)/κ+ (1− α)σ(θ′′)/κ = 1 and γ′, γ′′ ≥ 0. then

φ(αθ′ + (1− α)θ′′) ≤ κf(γ′x̄′ + γ′′x̄′′)) ≤ κ(γ′f(x̄′) + γ′′f(x̄′′)) =
ασ(θ′)κf(x̄′)/κ+ (1− α)σ(θ′′)κf(x̄′′)/σ(θ′′)/κ = αφ(θ′) + (1− α)φ(θ′′) .

which completes the proof.
By setting z1 = x, zi+1 = −x̂i, i = 1, 2, . . . ,m and applying lemma 1 to

φ(θ) = σ(θ)f
(

(
∑m+1
i=1 θiz

i)/σ(θ)
)

with θ1 = 1 we obtain convexity of Ξ(θ).

3 Convergence

The following theorem establishes the convergence of SPA-MC.

Theorem 1. Let {vkU} be the sequence of lower estimates

vkU = inf
(0,µ)∈Uk

f

µ ≤ f?(0) ,

of the optimal value in the problem (1) which are generated by SPA-MC as
prescribed by Algorithms 1-2. Then

lim
k→∞

vkU = f?(0) = −min
x
f(x) .

Proof. Let k = 1, 2, . . . number the sequence of the update iterations of SPA-MC
which are prescribed by Algorithms 1 and 2, and let Ukf , L

k
f are the corresponding

upper and lower approximations of epi f? at the beginning of k-th iteration.
Naturally, updated Ukf , L

k
f become Uk+1

f , Lk+1
f .

By construction Ukf ⊃ epi f? ⊃ Lkf and

epi f? ⊂ Uk+1
f ⊂ Ukf , Lkf ⊂ Lk+1

f ⊂ epi f?

so both these sequences have Kuratovski limits, which we denote as U•f , L
•
f

respectively.
Observe that vkU ≤ v

k+1
U ≤ f?(0) hence the sequence {vkU} has a limit which

we denote as v•U .
Convergence of SPA-MC means that vkU → f?(0) or, equivalently, dist(v̄kU , epi f?) =

dist((0, vkU ), epi f?) → 0 when k → ∞. As dist(v̄kU , epi f?) ≤ dist(v̄kU , L
k
f ) it is

sufficient to show that dist(v̄kU , L
k
f )→ 0.

Denote V̄ kU = vkU − {0} × R+ and notice that

dist(v̄kU , L
k
f ) = dist(v̄kU − 0×R+, L

k
f ) = dist(V̄ kU , L

k
f ) .

As V̄ k+1
U ⊃ V̄ kU and Lk+1

f ⊃ Lkf the distance dist(V̄ kU , L
k
f ) is non-increasing:

dist(V̄ k+1
U , Lk+1

f ) ≤ dist(V̄ kU , L
k
f ) ≤ dist(V̄ 0

U , (0, κ) + 0× R+) = ‖v0
U − κ‖
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hence the norms of all vectors zk = ΠLk
f
(V̄ kU ) − V̄ kU ) are uniformally bounded

and have the same limit ρz = limk→∞ ‖zk‖. The key question is however what
is the value of ρz. If ρz = 0 then dist(V̄ kU , epi f?)→ 0 and

lim
k→∞

vkU = v•U = f?(0)

which establishes convergence of SPA-MC.
To show that this is just the case assume contrary: ρz > 0. Then the sequence

{zk} due to its boundness has at least one limit point, which we denote as z•

with a certain subsequence {zkt , t = 1, 2, . . . } → z•.
The Support and Update steps of the Algorithms 1-2 redefines vkU in a

following way:

1. Solve
inf

ḡ=(g,µ)∈epi f?∩Qk

zkḡ = zkḡk = γk ,

where ḡk = (gk, µk).
2. If γk > vkU redefine vk+1

U = γk . Otherwise vk+1
U = vkU .

In any case ḡkzk ≤ v̄k+1
U zk and passing in this inequality to the limit along the

subsequence where all limits exist obtain

ḡ•z• ≤ v•Uz• . (13)

On the other hand as zk is obtained by projection of (0, vkU ) on Lkf and taking

into account that ḡk ∈ Lk+1
f we have (ḡk− v̄k+1)zk+1 ≥ ‖zk+1‖2. Passing to the

limit gives (ḡ• − v̄•)z• ≥ ‖z•‖2 ≥ γ > 0 or

ḡ•z• ≥ v̄•Uz• + γ > v̄•Uz
• . (14)

Obviously (13) and (14) contradict each other and it proves the theorem.

Conclusion

We present in this work the general scheme for modification of separating plane
algorithms which provides additional possibilities for improving relaxational
properties of algorithms of nonsmooth optimization. It is based on imposing
additional cuts in the dual space of conjugate variables which resrict the test
area and may additionally localize the extremum. The scheme allows also more
sophisticated low-dimensional local search procedures to be applied on each it-
eration to speed up convergency.
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