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Abstract

This paper considers implementable versions of a conceptual convex optimization algorithm

which provides a high-speed (superlinear, quadratic and finite) convergence for the broad classes

of convex optimization problems.

Keywords: convex optimization, conjugate function, approximate sub-differential, super-

linear convergence, quadratic convergence, finite convergence, projection, epigraph

Introduction

This work considers different issues of solving the fundamental convex optimization problem

min
x
f(x) (1)

where the objective function f neither need to be a finite and/or differentiable in a classical sence.

The main idea is to consider the equivalent problem in the congugate (subgradient) space of of

computing the value and subgradient of a conjugate function at zero. Convexity allows to guarantee a

number of attaractive features of such approach [1]: uniform treatment of conditional and unconditional

optimization problems, development of projection-type algorithms with superlinear convergence in the

general case, quadratic rate of convergence in sub-quadratic case and finite convergence in the case of

sharp minima.

It was further suggested in [2, 3] to impose certain additional cuts to improve the relaxation proper-

ties of the algorithm. Convergence of the resulting algoriths was proved under very general conditions

however the computational efficiency of these algorithms remained under the question. Here we intend

to study it at least experimentally.

1 Notations and Preliminaries

Throughout the paper we use the following notations: E is a finite dimensional euclidean space of

primal variables of any dimensionality. The inner product of vectors x, y from E is denoted as xy.

The cone of non-negative vectors of E is denoted as E+. The set of real numbers is denoted as R and

R∞ = R ∪ {∞}.
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The norm in E is defined in a standard way: ‖x‖ =
√
xx and for X ⊂ E ‖X‖ = supx∈X ‖x‖. This

norm defines of course the standard topology on E with the common definitions of open and closed

sets and closure and interior of subsets of E. The interior of a set X is denoted as int(X).

The unit ball in E is denoted as B = {x : ‖x‖ ≤ 1}. The support function of a set Z ⊂ E is denoted

and defined as (Z)x = supz∈Z xz.

A vector of ones of a suitable dimensionality is denoted by e = (1, 1, . . . , 1). A standard simplex

{x : x ≥ 0, xe = 1} with x ∈ E,dim(E) = n is denoted by ∆E .

We use the standard definitions of convex analysis (see f.i. [6]) related mainly to functions f : E →
R∞: the domain dom f of a function f is the set dom f = {x : f(x) < ∞}, the epigraph epi f of a

function f is a set epi f = {(µ, x) : µ ≥ f(x)} ⊂ R∞ × E.

Further on all functions are closed convex in a sense that their epigraphs are closed convex subsets

of R∞ × E.

Definition 1 For a convex function f : E → R and fixed x ∈ E the set ∂f(x) = {g : f(y) − f(x) ≥
g(y − x) for all y ∈ dom f} is called a sub-differential of f at the point x.

The sub-differential ∂f(x) of f at point x is well-defined and is a closed bounded convex set for all

x ∈ int(dom f). At the boundary of dom f it may or may not exists. The sub-differential ∂f(x) is also

upper semi-continuous as a multi-function of x when exists.

Definition 2 The directional derivative of a finite convex function f at point x in direction d is denoted

and defined as ∂f(x; d) = limδ→+0(f(x+ δd)− f(x))/δ.

It is well-known from convex analysis that ∂f(x; d) = supg∈∂f(x) gd = (∂f(x))d.

Definition 3 For a convex function f : E → R∞ the function

f?(g) = sup
x
{gx− f(x)} = (epi f)ḡ, where ḡ = (−1, g) ∈ R∞ × E (2)

is called a conjugate function of f .

The key result of convex analysis is that for a closed convex function f

sup
g
{gx− f?(g)} = (epi f?)x̄ = f(x), (3)

where x̄ = (−1, x) ∈ R∞ × E.

It is also easy to see that if (epi f?)x̄ = gxx − f?(gx) then gx ∈ ∂f(x) and the other way around:

for ḡ = (−1, g) if (epi f)ḡ = gxg − f(xg) then xg ∈ ∂f?(g).

The trivial consequence of the Definition 3 is that f?(0) = − infx f(x) which is the key corre-

spondence used by the conjugate epi-projection algorithm, considered further on. As the conjugate

epi-projection algorithm operates in the conjugate space its convergence properties depend upon the

properties of the conjugate function of the objective. Therefore we introduce some additional classes

of primal functions to ensure the desired behavior of the conjugates.

Definition 4 Convex function f is called sup-quadratic with respect to a point x ∈ int(dom f) if there

exists a constant τ > 0 such that

f(y)− f(x) ≥ g(y − x) +
1

2
τ‖y − x‖2 (4)

for any g ∈ ∂f(x) and any y.
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We will call τ the sup-quadratic characteristic of f at x. Notice that strongly convex functions are

sup-quadratic at any x from their domains, however a function f , sup-quadratic at some x, need not

to be strongly convex.

A symmetric definition can be given for sub-quadratic functions.

Definition 5 Convex function f is called sub-quadratic with respect to a point x ∈ int(dom f) if there

exists a constant τ > 0 such that

f(y)− f(x) ≤ g(y − x) +
1

2
τ−1‖y − x‖2 (5)

for any y ∈ dom f and some g ∈ ∂f(x).

Notice that it follows from this definition that the function f , sub-quadratic at point x is in fact

differentiable at this point. Of course not all functions differentiable at x are sub-quadratic.

From the point of view of non-smooth optimization namely sup-quadratic functions are of particular

interest, and the definitions 4 and 5 establish important properties of conjugates functions for sup-

quadratic primals.

Lemma 1 Let f : E → R attains its minimum value f? at the point x? and f is sup-quadratic at

point x? with the positive sup-quadratic characteristic τ . Then f?(g) is sub-quadratic at g = 0 with the

corresponding sub-quadratic characteristic not lower then τ−1.

Proof. By definition for any x

1

2
τ‖x? − x‖2 ≤ f(x)− f? = f(x) + f?(0) (6)

and hence

f?(g)− f?(0) = xgg − (f(xg) + f?(0)) ≤ xgg −
1

2
τ‖x? − xg‖2 (7)

for any xg ∈ ∂f?(g). Hence

f?(g)− f?(0) ≤ x?g + (xg − x?)g − 1
2τ‖x

? − xg‖2 ≤
x?g + supz{zg − 1

2τ‖z‖
2} = x?g + 1

2τ
−1‖g‖2.

(8)

Another interesting subclass of convex functions are those which have zero in the interior of the

subdifferential at the solution x? of (1), that is 0 ∈ int(∂f(x?)). This condition is also known as ”sharp

minimum” and extended further on in [7] and others. The special attraction of this case is that the

well-known proximal method has then a finite termination [8] for such problems. The conjugate epi-

projection optimization algorithm has the same property which is based on the fact that the conjugate

functions for the primal functions with sharp minimum have very simple behavior in the vicinity of

zero.

Lemma 2 If solution x? of (1) is such that 0 ∈ int(∂f(x?)) then there is ρ > 0 such that f?(g) =

gx? − f(x?) for ‖g‖ < ρ.

Proof. If ρ is small enough then sharp minimum condition implies 0 ∈ ∂(f(x?) − gx?) = ∂f(x?) − g
for any g ∈ ρB and therefore

f?(g) = sup
x
{gx− f(x)} = gx? − f(x?)

is a linear function of g.
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Namely this property guarantees the finite termination of the conjugate epi-projection optimization

algorithm.

For additional results on connections between sharp minimum and properties of conjugate functions

see also [9].

2 Conjugate Epi-Projection Algorithm

As it was already mentioned the basic idea of the conjugate epi-projection algorithms consists in

considering the convex problem (1) as the problem of computing the conjugate function of the objective

at the origin:

f?(0) = −min
x
f(x) = −f? = inf

(0,µ)∈epi f?
µ.

We suggest to use for computing f?(0) the algorithms based on projection onto the epigraph epi f?.

This idea demonstrates some promises for effective solution of (1) and suggests some new computational

ideas.

The algorithms considered here consist in execution of an infinite sequence of iterations, which

generates the corresponding sequence of points {(ξk, 0) ∈ R × E, k = 0, 1, . . . } with ξk → f?(0) when

k →∞. For each of these iterations they call a subgradient oracle which for any x ∈ E computes f(x)

and some arbitrary g ∈ ∂f(x). Also they require solution of nonlinear projection problems which make

the algorithms, strictly speaking, unimplementable. However the analysis of the algorithm demonstrate

its potential and can show the ways to its practical implementations.

We give here first the original version of a conceptual conjugate epi-projection algorithm and cite

here the key results about its convergence. This is followed by a few simple numerical experiments just

to provide a reference point for further modifications and to indicate some numerical problems which

can arise in its straightforward implementation.

2.1 Basic computational scheme

The principal details of the iteration of the conjugate epi-projection algorithm are given on the Fig.

Algorithm 1. Convergence of the Algorithm 1 is confirmed by the following theorem.

Theorem 1 Let f be a finite convex function with the finite minimum f? = minx f(x) = −f?(0) and

ξk, k = 1, 2, . . . are defined by the Algorithm 1 with ξ0 < f?(0). Then

lim
k→∞

ξk = f?(0) = −f?

and

f?(0)− ξk+1 ≤ λk(f?(0)− ξk)

with λk → 0 when k →∞.

It means that Algorithm 1 in general case has at least superlinear rate of convergence.

Next we consider the problem (1) with sup-quadratic objective function f where we can claim

global convergence of the conceptual conjugate epi-projection algorithm and asymptotic quadratic rate

of convergence.

Theorem 2 Let objective function f in problem (1) is locally sup-quadratic with sup-quadratic charac-

teristic τ and ξk, k = 1, 2, . . . are defined by the Algorithm 1 with ξ0 < −f?. Then limk→∞ ξk = f?(0)

(Algorithm 1 converges) and for k large enough f?(0)− ξk+1 ≤ τ−1(f?(0)− ξk)2 (that is convergence

is quadratic).
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Data: The convex function f : E → R, the epigraph epi f?, the current iteration number k

and the current approximation ξk ≤ f?(0).

Result: The next approximation ξk+1 such that ξk ≤ ξk+1 ≤ f?(0)

Each iteration consists of two basic operations: Project and Support-Update

Project. Solve the projection problem of the point (ξk, 0) onto epi f?:

min
(ξ,g)∈epi f?

{(ξ − ξk)2 + ‖g‖2} = (ξpk − ξk)2 + ‖gkp‖2 (9)

with the corresponding solution (ξpk, g
k
p) = (f?(gkp), gkp) ∈ epi f?. We demonstrate in the

analysis of the algorithm convergence that f?(0) ≥ ξpk > ξk if ξk < f?(0).

Support-Update Compute support function of epi f? with the support vector

zk = −(ξpk − ξk, gkp) ∈ R× E

(epi f?)zk = sup(µ,g)∈epi f?{−(ξpk − ξk)µ+ gkpg)} =

(ξpk − ξk) sup(µ,g)∈epi f?{−µ+
gkp

(ξpk − ξk)
g} = (ξpk − ξk) sup(µ,g)∈epi f?{−µ+ xkpg} =

(ξpk − ξk)(xkp g̃
k
p − f?(gkp)} = (ξpk − ξk)f(xkp),

where xkp = gkp/(ξ
p
k − ξk). Notice that as f is assumed to be a finite function this operation is

well-defined.

Finally we update the approximate solution with ξk+1 using the relationship

ξ̄k+1z
k = (epi f?)zk , where ξ̄k+1 = (ξk+1, 0) ∈ R× E,

which actually amounts to ξk+1 = −f(xkp), increment iteration counter k → k + 1, etc.

Algorithm 1: The basic iteration of the conceptual conjugate epi-projection algorithm algo-

rithm
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Finite convergence of this algorithm for sharp minimum is established by the following theorem.

Theorem 3 Let the objective function of (1) has a sharp minimum at solution point x?, all assump-

tions of the theorem 1 are satisfied and ξk, k = 1, 2, . . . are defined by the Algorithm 1 with ξ0 < −f?.

Then there exists k? such that ξk? = f?(0) = −f?.

Notice that in all cases convergence is global and does not requir any additional assumptions.

2.2 Implementation issues

The critical part in implementation of Algorithm 1 is the projection step (9), where the point (ξk, 0) is

projected onto epi f?. The set epi f? is given implicitely only, however due to Fenchel-Morou duality

we can easily compute the supremum of any linear function p̄z̄ on it where z̄ = (µ, z), µ ≥ f?(z),

p̄ = (π, p). This supremum is finite when π < 0 and then

( sup
z̄∈epi f?

{πµ+ pz} = |π| sup
z,µ≥f?(z)

{pz/|π| − µ} = |π| sup
z
{pz/|π| − f?(z)} = |π|f(pz/|π|).

It gives a chance to suggest simple iteration-like algorithms, using implementable projection onto in-

ner approximation Pk of epi f? which is represented on Fig. 2. This algorithm in practice is interrupted

Data: The epigraph epi f?, its polyhedral approximation, the point q̄ = (ξ, 0) /∈ epi f?

Result: The sequence {ḡk = (ξk, g
k) ∈ epi f?, k = 1, 2, . . . } such that ḡk → ḡ? ∈ epi f? and

‖ḡ? − q̄‖ = minḡ∈epi f? ‖ḡ − q̄‖
Initialize; P0 = g0, k = 0

While;

Solve quadratic optimization problem:

min
g∈Pk

‖g − q̄‖2 = ‖gk − q̄‖2 (10)

Upgrade:

Pk+1 = co{Pk, gk}, k → k + 1

end while;

Algorithm 2: Iterative algorithm for projection on epi f?

when desirable accuracy is acheived. The quadratic optimization problem (10) can be solved by many

off-the-shelf quadratic solvers, however our experience is that the specialized algorithms like [4] outper-

forms them. One can find the OCTAVE-version of the code as DOI: 10.13140/RG.2.2.21281.86882

at [5].

2.3 Numerical example

The most interesting and difficult tests of nonsmooth optimization consist in minimization of piece-

wise quadratic problems which are constructed as finite maximum of convex quadratics. We demon-

strate performance of the implementable version of Algorithm 1 with iterative Algorithm 2 for ap-

proximate solution of the auxiliary projection problem (9) on a simple problem (1) with f(x) =

maxi=1,2(x − ai)Ai(x − ai) with a1 = (0, 0, 0), a2 = (2, 3, 9) and Ai are diagonal matrices: A1 =
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Figure 1: Projection operation on epi f? on different iterations of Algorithm 1. Boxed numbers on the

Figure denotes the major iterations of Algorithm 1

diag(9, 4, 1), A2 = diag(1, 4, 9). The optimization solver CONDOR 1.06, running on NEOS optimiza-

tion solver [10] reported succesfull complition after 63 function evaluations with the objective value of

0.4348696068. Our solver attained slightly worse 0.43673 with 27 function evaluations.

The loss in the value of objective function can be probably explained by the numerial instability

of projection problems (9) at the final iterations of optimization process. The Figure 1 demonstrates

the peculiar features of SU-step during solution of minimization problem. It shows convergence of

the simple projection Algorithm 2 in solution of the projection problem (9) in terms of optimality

condition δk = ‖zk‖2 − infz∈epi f? zzk where zk ∈ epi f? — an approximate solution of (2) obtained on

k-th iteration of this algorithm. For any k the value of δk is non-negative and if δk = 0 then zk is the

solution of (2).

It can be seen from the Fig. 1 that in all cases the auxiliary projection problem was solved

sufficiently quickly with at least the linear rate of covergence. However, it also can be seen that the

projection Algorithm 2 slows down when projected point approaches the epigraph epi f?. This was

expected behavior of the algorithm and there are known technics to improve solution of 2 in this case,

but this issue requires additional investigation.

3 Conjugate Epi-Projection Algorithm with a Skew Cut

One of the other possible ways to improve computational behavior of the conjugate epi-projection algo-

rithm is to introduce additional condtraints in Support-Update (SU) step of this algoritm. Namely,
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if we assume that there is an additional condition (µ, g) ∈ Q ⊂ E × R with (f?(0), 0) ∈ Q then

ωx = sup
(µ,g)∈epi f?∩Q

{xg − µ} = xgx − f?(gx) ≤ xgx − xgx + f(x) = f(x)

so ωx will provide better (lower) upper estimates for minx f(x) = −f?(0). Of course it will be necessary

to ensure that an aditional constraint (µ, g) ∈ Q does not cut off the solution (f?(0), 0). It implies that

(f?(0), 0) ∈ Q which can be ensured in different ways.

The corresponding modification of SU-step is shown as Algorithm 3.

Data: The epigraph epi f?, the current iteration number k, the current approximation

ξk ≤ f?(0), and projection vector zk obtained from Project step.

Result: The next approximation ξk+1 such that ξk ≤ ξk+1 ≤ f?(0).

Modified Support-Update

Compute support function of Gk = epi f? ∩Qk with the support vector

zk = −(ξpk − ξk, gkp) ∈ R× E

(Gk)zk = sup(µ,g)∈Gk
{−(ξpk − ξk)µ+ gkpg)} =

(ξpk − ξk) sup(µ,g)∈Gk
{−µ+

gkp
(ξpk − ξk)

g} = (ξpk − ξk) sup(µ,g)∈Gk
{−µ+ xkpg} =

(ξpk − ξk)(xkp g̃
k
p − f?(gkp)}.

where xkp = gkp/(ξ
p
k − ξk).

Notice that now gkp /∈ ∂f(xkp) and we need an additional operation to recover the support

vector to epi f? at the point (f?(gkp), gkp).

Algorithm 3: Modified Support-Update (MSU) step

Convergence of the Algorithm 3 is confirmed by the following theorem.

Theorem 4 Let f be a finite convex function with the finite minimum f? = minx f(x) = −f?(0) and

ξk, k = 1, 2, . . . are defined by the Algorithm 3 with ξ0 < f?(0). Then limk→∞ ξk = f?(0) = −f?, that

is the algorithm converges;

Proof. Assume that on k-th iteration we have ξk < f?(0) as the approximation of f?(0). According

to Algorithm 3 to construct the next (k + 1-th) approximation ξk+1 the point (ξk, 0) ∈ R×E is to be

projected onto epi f? ∩Qk first:

min
(ξ,g)∈epi f?∩Qk

{(ξ − ξk)2 + ‖g‖2} = (ξpk − ξk)2 + ‖gkp‖2 (11)

The solution (ξpk, g
k
p) = (f?(gkp), gkp) ∈ epi f? of this problem satisfies optimality conditions

(f?(gkp)− ξk)(ξ − ξpk) + gkp(g − gkp) ≥ 0 (12)

for any (ξ, g) ∈ epi f? ∩Qk.

It is easy to see that ξpk > ξk. Indeed the opposite strict inequality ξpk < ξk contradicts the optimality

of (ξpk, g
k
p) as in this case

(ξk, g
k
p) = (ξpk + (ξk − ξpk), gkp) ∈ epi f? ∩Qk ⊂ epi f?,

and

(ξk − ξk)2 + ‖gkp‖2 < (ξk − ξpk)2 + ‖gkp‖2 = min
(ξ,g)∈epi f?

{(ξk − ξ)2 + ‖g‖2}.
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If ξpk = ξk then R× {0} is strictly separable from epi f?:

ξ(ξk − ξpk) + 0gkp = 0 < ‖gkp‖2 ≤ µ(ξk − ξpk) + ggkp

for any (µ, g) ∈ epi f? as it follows from projection conditions. Hence 0 /∈ dom(f?) which contradicts

the assumptions of the theorem.

According to Algorithm 3 the next approximation ξk+1 is determined from the equality

(ξpk − ξk)(ξk+1 − ξk))− ‖gkp‖2 = (ξpk)− ξk)2 + ‖gkp‖2

which gives the following expression for ξk+1:

ξk+1 = ξk + ‖gkp‖2/(ξ
p
k − ξk) ≥ ξk,

and ξk+1 = ξk if and only if gkp = 0 which means that we already obtained the solution.

Repeating this operation we obtain the monotone sequence ξk, k = 0, 1, . . . such that

ξk ≤ ξk+1 ≤ f?(0), k = 0, 1, . . .

where inequalities turn into equalities only if either ξk = f?(0) or ξk+1 = f?(0) which of course makes

no difference. Under these conditions limk→∞ ξk = f?(0) which proves the convergence of the algorithm

1.

3.1 Projection in Modified Support-Update Step

The key step in MSU step of Algorithm 3 is the computation of projection of a given point, say z, on

Gk = epi f? ∩Qk where Qk is a cutting set. It can be approximately solved by the iterative Algorithm

2 which in turn requiers computing of the support function (Gk)zk of the set Gk = epi f? ∩ Qk with

the given support vector zk ∈ R × E. By dropping for simplicity the iteration index k we face the

following problem

(G)z = sup

g ∈ epi f?

g ∈ Q

zg = zg?

the computational difficulty of which critically depends on cutting set Q. To begin with something

constructive we consider here the simplest choice of Q = Hp,β where Hp,β is the half-space, described

by linear inequality Hp,β = {(µ, g) : pg − µ ≥ β}, where p ∈ E and β ≥ f?(0) to guarantee that

(f?(0), 0) ∈ Hp,β . Such β is easy to obtain from the inner approximation D of epi f? if available.

If the vertical line R × {0} intersects D at some point (−β, 0). Then −β ≥ f?(0) and therefore

(f?(0), 0) ∈ Hp,β .

For the choice of vector p we have almost unlimited freedom and choice of the best p might be an

interesting subject for further consideration.

Then

sup

µ ≥ f?(g)

pg − µ ≥ β

{xg − µ} = inf

θ ≥ 0

sup

µ ≥ f?(g)

{xg − µ+ θ(pg − µ− β)} =

inf

θ ≥ 0

sup

µ ≥ f∗(g)

{g(x+ θp)− µ(1 + θ)} − βθ =

inf

θ ≥ 0

{−βθ + (1 + θ) sup

µ ≥ f∗(g)

{gx+ θp

1 + θ
− µ}} =

inf

θ ≥ 0

{−βθ + (1 + θ)f(
x+ θp

1 + θ
)} = inf

θ ≥ 0

{−βθ + (1 + θ)f(x+
θ

1 + θ
(p− x))}.
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By introduction of new variable γ =
θ

1 + θ
the last expression can be transformed in

inf

γ ∈ [0, 1)

{− γ

1− γ
β +

1

1− γ
f(x+ γ(p− x))} = inf

γ ∈ [0, 1)

(1− γ)−1{f(xγ)− γβ} = ψ(γ),

where xγ = x+ γ(p− x) and so the support problem is reduced to one-dimensional minimization.

Conclusion

The conceptual version of the dual epi-projection algorithm has promising computational properties

which makes it a viable candidate for developing implementable versions. First of all it guarantees

global super-linear convergence to the optimum for any solvable convex optimization problem. Second,

it provides quadratic convergence and even finite termination without any changes in the algorithm for

quite common types of convex optimization problems: sup-quadratic, which strictly contain strongly

convex, and convex optimization problems with sharp minimum. It is worth to notice that the algo-

rithm is absolutely parameter-free, use the first-order subgradient oracle only, and requires no specific

knowledge of any specific characteristics of convex optimization problem, like Lipshitz constants, strong

convexity parameter or close enough starting point.

The implementation perspectives for the algorithm depend upon the possibility to produce practical

version of the projection operator on epi f?. From the theoretical point of view it is easy to derive

accuracy estimates for its termination so it can be finitely solved for any required accuracy. It can

be used to preserve the overall rates of convergence in terms of Algorithm 1 iterations, however the

resulting computational complexity requires further investigations.
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