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Abstract—The Parker—Sochacki method, which is used for solving systems of ordinary differential
equations, and implementation of this method on graphics processors are described. The solution to
the classical N-body problem is considered as a test. The algorithm makes it possible to effectively
use massive parallel graphics processors and provides acceptable accuracy with multiple time
reduction, as compared to processors of a conventional architecture.
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1. PARKER-SOCHACKI METHOD

The Parker—Sochacki method for solving systems of ordinary differential equations (ODEs) numeri-
cally allows obtaining the Maclaurin series for solving ODE systems with a polynomial right-hand side.
Recent revival of interest to this algorithm can be noted [1, 2]. In some cases, the use of the Maclaurin
series is more preferable than the use of conventional difference schemes. Another advantage of the
method is the possibility of its parallelization.

We consider the classical problem of numerical integration of an ODE system

du
=) (1)

on the time interval ¢ € [0,7] with a specified initial condition u(0) = v” € E™ and the right-hand
side of the differential equation f : E™ x [0, T] — E™, where E™ is the Euclidean n-dimensional space.
Standard conditions of existence and uniqueness of the solution to problem (1) are assumed to be valid:
f(u,t) is a continuous function with respect to the set of its arguments and a Lipschitz function with
respect to u, i.e., || f(t,u') — f(t,u")| < L|ju' — u"|| fora certain L and all t € [0, 7. If these conditions
are satisfied, then not only a unique solution to problem (1) with the specified initial condition exists, but
also this solution can be obtained rather rapidly by applying a converging Picard process (see, e.g., [4]):

t
uk+1(t)=u0+/f(s,uk(s))ds, k=0,1,..., (2)
0

which can be started from an arbitrary approximation u°(t), t € [0, T.

Although this method was used for the theoretical investigation of ODEs, for instance, with the use
of the theory of compressing images, it has not been applied in practice because of the exponential
growth of computational complexity of iterations (2). The situation changed appreciably when Parker
and Sochacki [3] noted that, in the case of numerical integration of ODEs with a polynomial right-
hand side f, each u"'(t), k=0,1,..., is a polynomial, and it is sufficient to use a finite number of
Picard iterations, which depends on the power index of this polynomial, to obtain a specified number
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224 NURMINSKII, BURYI

of exact values of the Maclaurin expansion coefficients to solve Eq. (1). With an admissible estimate of
the Maclaurin series error, it is possible to calculate the system coordinates at an arbitrary time without
using interpolation schemes, etc.

The following notions and designations are used in this paper.

Definition 1. A polynomial of n variables is a finite formal sum of the form

Z(‘].Llllflzz... zin, (3)

where I = (iy,i2,..., in) € Z", is called a multi-index, ¢y € R is the polynomial coefficient, Z is the
set of nonnegative mteger numbers, and R is the set of real numbers.

In what follows, we deal with ODE (1), where a polynomial function P : E™ — E™ of the vector
argument from E™ is used as the right-hand side. For such functions, IT; P(x) means the kth component
of P(z). For the vector v, the kth component is designated by vy.

Definition 2[3]. P : E™ — E™is called a polynomial [unction if there exists
T:{k|keNk<n}— 2%
where N is the set of natural numbers,
S={f:{k|keNk<n} —>NU{0}},
c:{(k,q) | keN,k<n,qeT(k)} =R\ {0},
and if there exists v € E™ such that, if K < n and € E™, then
M.P(x) = v, + Z (k,q) HJQ('
q€T (k)
For a given initial value u°, using the following recurrent relations, we define

u’ fors =1,
Ps(t) - 0 t (4)
u’ + [ P(Ps-1(7))dr fors > 1,
0

the sequence Py : E™ — E™ s=1,2,.... The power indices j,, and j, of the polynomial functions P,
and P, depend on the number of the Picard iterations (4) and on the power of P. These indicators do not
decrease with increasing iterations. The following theorem is valid.

Theorem 1[3]. Let us assume that P : E™ — E™ is a polynomial function. Let v° € E". If r € N,
m>r,and k <n,j, < jm, then

jf‘ jm
(HkPr)(t) = ug + Z ak,r,itla (Hkpm)(t) = ur + Z ak,m,itl-
i=1 1=1
Further, if | < r, then
Akl = Qk,mls (5)

where apr; € E and agm,; € E.

Statement (5) of the theorem means that further Picard iterations (after the rth iteration) do
not change the previous ay ,; coefficients in the expansion. As was demonstrated in [3], Theorem 1
guarantees, for ODEs with the right-hand side in the form of a polynomial function and initial conditions
specified at the zero point, the sth iteration of the resultant polynomial coincides with s first terms of the
Maclaurin series. The next theorem extends the described result to the cases with initial conditions
specified at a point other than zero.
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PARKER—SOCHACKI METHOD FOR SOLVING SYSTEMS 225

Theorem 2 [3]. Let P be a polynomial function on E"*' and y: E™ — R such that, if t > T,
t € D(y'), then

y(t) = P(t.y(t), y(T)==.
Let g be a function on E"*Y such that,ift > 0, t € D(g'), then
g'(t) = (L, P(g(t), ¢(0)=(T,z)
Let us use the following de9nition:

) fors=1,
Py(t) = r (6)
u0+/Po (I.ps)dr} Jors>1,
t
P,:E—E,
9(0) fors=1,
Qs(t) = (7)

t
9(0) + /(l,Po(qs))dT} fors > 1,
0

Q.: E— E.
Therefore, if s € N, then
g, (t = T) = Py(t).
According to [3], Theorem 2 allows the solution to be obtained in the form of Taylor series for the
initial condition at the point ¢ — T'. The next definition is important for analytical functions (functions

that coincide with their Taylor series in the neighborhood of an arbitrary point of the domain of definition),
which are not polynomial.

Definition 3 [3]. Let us assume that y : [0,7) — E is an analytical function. The function y is called
projectively polynomial (in terms of[3]) if there exists a polynomial P : E™ — E™ n € N, and a function
w: E™ — E" such that w' = % = P(w), for which there exists k < n such that y = T w.

One can combine projectively polynomial functions, still remaining in the same class.
Theorem 3 [3]. Let us assume that f and g are projectively polynomial [unctions. Then, f + g, [g,
and f(g) are projectively polynomial [unctions.

There are several conclusions from Theorems 1—3, which are important for applications.

1. The solution in the form of a polynomial is unique and, therefore, coincides with the Maclaurin
series.

2. The properties of a projectively polynomial function are retained for the sum, product, and
derivative of the projectively polynomial function.

3. To calculate the (n 4 1)th term of the approximating polynomial in the Parker—Sochacki method,
it is necessary to calculate only n previous terms.

4. For solutions in the form of analytical functions, the solution can be obtained with arbitrary
accuracy on a finite interval.

5. The solution obtained by the Picard iterations satisfies the local Lipschitz condition and guaran-
tees that the resultant expansion is a Maclaurin series.

As Parker and Sochacki noted in [3], by the moment of writing the paper, they had not encountered any
ODE system that could not be brought to a polynomial form. They did not give any estimates, however,
how large the class of projectively polynomial functions is.
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226 NURMINSKII, BURYI

2. EXAMPLE OF USING THE PARKER-SOCHACKI ALGORITHM
As an example of using the Parker—Sochacki algorithm, let us consider the ODE
dx 1
dat 1+t (8)
with the initial condition z(0) = 0. The solution of this equationis x(¢) = In(f + 1). To apply the Parker—
Sochacki method, we transform the system to a polynomial form
dr du
at " dt

with the initial conditions z(0) = 1 and u(0) = 1. We write the solution z(¢), u(t) in the form of the
Maclaurin series

n n
w(t) = apth, u(t) =) wt"
k=0 k=0
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Fig. 1. Deviation of the approximate solution from the exact solution for cubic Maclaurin—Taylor polynomials. The time
step is 0.3.

Table 1. Coefficients of the Maclaurin—Taylor polynomials

Coefficients Interval k=0 k=1 k=2 k=3
K [0.0,0.3] 1 -1/2 1/3 —-1/4
g -1 | -1 l
Tk [0.3,0.6] 0.262 0.769 | —0.295 | 0.151
Uk —0.591 0.455 —0.350 0.269
Tk [0.6,0.9] 0.470 0.625 —0.195 0.081
uk —0.390 0.244 —0.152 0.095
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It follows from (4) that the coefficients z;. and u;, can be calculated by the formulas

Up—1

k=1,....n; x= "

k-1
1
Poup = _E,E_% wug——1; r9=0, wuy=1L (9)

In what follows, the segment of the Maclaurin series limited by (m + 1) terms is called a Maclaurin
polynomial of the mth order; for the Taylor series, we call it a Taylor polynomial. The interval where
the Maclaurin or Taylor polynomial is calculated is called a time step of integration. The entire time
period when integration is performed can be divided into several time steps. An important issue is the
relationship between the power of the Maclaurin polynomial and the length of the time step, which
determines the accuracy of the solution obtained. The extreme strategies are either choosing a high
power of the polynomial with a large time step or dividing the necessary interval of integration into
smaller time steps and using polynomials of a comparatively power at each time step. It is also possible
to vary both the polynomial degree and the size of the time interval simultaneously, which was done, e.g.,
in 5]

For a qualitative study of this issue, we performed numerical experiments with solving ODE (8) on
the interval [0,0.9] with a time step 0.3. Approximation of the solution of (8) by a cubic Maclaurin—
Taylor polynomial was considered at each time step. The polynomial coefficients are listed in Table 1.
Figure 1 shows the deviation of the approximate solution from the exact solution.

The solution is substantially different from the exact solution, especially at the right end of the interval.
An additional experiment shows that the solution accuracy for this equation can be increased by two
methods: either increasing the polynomial power or decreasing the time step. As the indicator of the

b
solution accuracy, we use the integral norm Ly: 0(f, f*) = |f — f*|l = [(f(z) — f*(z))?dz, where

f(z) and f*(x) are the exact and approximate solutions on the interval [a, b]. To calculate the integral
in the error formula, we used the Simpson’s method, which provided good agreement with the control
analytical calculation. Two variants of the numerical solution were considered. In the first case, the time
step was fixed, and the power of the approximating polynomials was changed. The error was calculated
individually for each time step. Figure 2 shows the behavior of the error §(f, f*) as the Taylor polynomial

le-06 T T T T T T T T T
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Fig. 2. Dependence of the integral error 0(f ; f *) on time for different powers of the Maclaurin—Taylor polynomials. The
time stepis 0.1.
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Fig. 3. Dependence of the integral error (f; f *) on time for different powers of the Maclaurin—Taylor polynomials.

power is increased from 3 to 5. Even a small power of the approximating polynomial ensures a rather
small error. It is seen that the error remains small inside the time step interval as well. In the second case,
the polynomial power was fixed, and the time step was changed. In this case, the error was calculated for
the entire interval on which the solution was sought. Figure 3 shows the behavior of the error 6( f, f*)
with decreasing the time step. Beginning from a certain moment, depending on the time step, an increase
in the polynomial power does not reduce the error, which reaches the level of computer accuracy. The
error logarithm decreases linearly, which agrees with the order of the residual term in the Taylor series
forln(z + 1).

2.1. Application of the Parker—Sochacki Method in the N -Body Problem

As a more realistic example of using the Parker—Sochacki method, we consider the classical
gravitational N-body problem. This problem is a good example for illustrating both the application of
the Parker—Sochacki method and the capabilities of graphics processors. Other methods of solving this
problem with the use of graphics processors were described in [6—9].

N material points interacting in accordance with Newton’s gravitation law in the absence of other
forces are considered in the classical formulation. The velocities and coordinates of the point at the time
t = 0 are specified as the initial data. This system can be described by the equations

da:m B dvU Zik — Tij
o = Vijs Z GM, ;
el ( Z (zir — ‘rlJ

where N is the number of points, i =1,2,3,j =1,2,3,..., N, is the index of the point, M} is the mass
of the kth point, G is the gravitation constant, z;; is the ith Cartesian coordinate of the jth point, and v;;
is the ith coordinate of velocity of the jth point.

Rudmin [10] proposed solving the above-described equations by the Parker—Sochacki method for

3/2 ’

the solar system, which can be done by introducing new variables u;;,i = 1,2,3,j =1,2,..., N,
3
dx;; dv; du;p.
dtu = 1] ka Tik _‘TU qk, —J Z -'l'zk_-Tz] Uzk_vij)- (10)
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System (10) contains a total of N(N —1)/2 + 6N equations. Representing the coordinate variables in
the form of the polynomials

M
2(t)i =Y ait, (11)
1=0
we obtain a polynomial presentation for velocities
M
v(t)ij = Z ﬁijltls (12)
1=0
where
Bi ji-
Qi = % (13)
(i,7,k,0) €[1,3] x [1, N]? x [1, M],
Np - -1
Bt = Y e D (kg — ijg)(j,g1-g-1)°,
k=1 =0
o , (14)
U]z'kz = Z WUjkqWj ke, —q» u‘;kz = Z u’jkquj,k,lfq:
q=0 q=0
-1
1 3
u]’kl = _T ujkqu,k,l—q: (15)
qg=1

where

K
Ajrr =D (ijg = Qikg) (Biji—q = Biki—q)-

qg=0 i=1

Equations (13)—(15) allow the N-body problem to be solved by the Parker—Sochacki method.

3. PARALLEL IMPLEMENTATION OF THE PARKER—SOCHACKI METHOD
ON GRAPHICS PROCESSORS

For implementation of the parallel version of the Parker—Sochacki algorithm, we used graphics
processor units (GPUs), which are now rather popular as a high-performance computational platiorm.
As a particular graphics processor, we used video cards of one of the leading producers in this field,
NVIDIA, which can also be used for nongraphical computations. For this purpose, we used a set of
libraries and programs of the Compute Unified Device Architecture (CUDA) [11, 12]), which provide
access to the GPU memory and computational resources. The basic programming language in this
system is a simplified version of the C language.

The GPU is a processor designed on the basis of the Single Instruction-Multiple Data (SIMD)
architecture, i.e., it is a vector processor. For this reason, it has better performance than the conventional
GPUs on a certain class of problems. The GPU can simultaneously perform a large number of processes,
each performing the same command, but with different data.

The technology of writing codes consists in writing a C code executed on a host computer, i.e., a
computer to which the accelerator including the NVIDIA processor is connected, and the so-called
kernel procedures executed on the GPU proper.

Let us consider the NVIDIA GPU/CUDA system in more detail. The following terms are used in
programming with the use of the CUDA. A thread is understood as a sequence of commands and data
to be processed. A warp is a set of 32 threads executed in parallel on a multiprocessor. A block is a
set of 64 to 512 threads. A grid is a set of blocks. Such a hierarchy is related to the specific features
of GPU hardware. As the number of blocks that can be simultaneously processed by the GPU difiers,
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depending on the model, such arrangement allows us to avoid using a particular version of the video
card. Each video card consists of several texture processors. Each texture processor consists of several
thread multiprocessors. Each multiprocessor has a moderate amount of memory, whichis called a shared
memory. The programmer can control the behavior of this memory. Therefore, this memory is not an
analog of the cache in usual processors. This memory is used for exchange of information between the
threads in one block. There is also a common memory, which has large delays in access time and lower
speed. Also there is a texture cache, which can be used for storage of constants. The computational
complexity of the Parker—Sochacki algorithm is

O(N2K?), (16)

where N is the number of bodies and K is the power of the Maclaurin polynomials. The memory
requirement is O(N2K). Technically, the memory requirements are more important for implementation
on the GPU than the algorithm complexity. At the moment, video cards and specialized cards with
a memory volume from 1 to 6 GB are available, which allows one to solve the N-body problem with
the dimension from 10,000 to 60,000 objects and with the polynomial power equal to 3. The linear
dependence of memory on the polynomial power allows polynomials to power 18 to be used for a system
of 10,000 objects. Solving such a problem requires 6 GB of memory. There are some possibilities to
alleviate memory requirements. The first one is canceling the division of u® into two parts. If this division
is used, it is necessary to store two additional arrays. It is also possible to cancel the storage array A,
which has the same dimension as u? and u*. Thus, it is possible to use only one array for storage of the
values of u. As a result, u is calculated in the following manner:

m l p—1_3 . l-p-1_3 . m—I-1_3 .
ujkqAJﬁkﬁp_l_q ujkrAyﬁkJ—p—l—r ujktAJ,k,m—l—l—t
ujkm=—§ E E: " Z 1— Z m—1 '

=() r=0 t=0

The next step in reducing memory requirements is the use of the property of symmetry of u. Usual
vectors and recalculation of indices were used for storage of matrices and three-dimensional arrays in
program implementation. Thus, to use the property of symmetry, it was sufficient to change the formulas
for recalculating the element indices.

4. COMPUTATIONAL EXPERIMENTS

The computational experiments were performed with the use of NVIDIA 280 GTX (clock frequency
1296 MHz, 240 thread multiprocessors, and 1 GB shared memory). To compare the performance with
CPU, we used Intel(R) Xeon(R) CPU E7330 with a frequency of 2.40 GHz.

The data generator formed a system of a massive body with bodies of much smaller mass rotating
around the large body. The location, velocity, and mass of the bodies were specified in a random manner.
In the experiments performed, the systems of bodies had the following parameters: the number of bodies
was varied from 100 to 500 with a step of 100; the power of the Maclaurin polynomials was changed
from 3 to 25. The number of equations reached 127,750 for a system of 500 bodies. The times of program
execution on the GPU and CPU versions of the program were measured in each experiment. According
to [10], the unit of the model time is the interval equal to 58 astronomical days. As the main goal of
the study was to compare the times of algorithm execution on the GPU and CPU, the following time
parameters were used: the time step corresponded to one hundred thousandth of the model time; a total
of 10,000 time steps were used, which was equal to 5.8 astronomical days.

The overall situation with comparisons of the CPU and GPU versions of implementation of the
Parker—Sochacki method is illustrated in Figs. 4—7. It is seen in Fig. 4 that the time of program
execution does not increase with increasing polynomial power in the cases with 100 and 200 bodies.
This fact can be explained as follows: for these systems, the number of bodies is smaller than the number
of thread multiprocessors, and there is a considerable reserve of GPU resources. Figure 6 shows the
CPU/GPU performance ratio. This figure shows that the advantage of the GPU over the CPU increases
with increasing system dimension. As a whole, it is seen in Fig. 7 that the efficiency of program execution
on the GPU increases linearly, beginning from 300 bodies. The experiments performed show that the
GPU version of implementation of the Parker—Sochacki algorithm for the N-body problem ofiers a
significant advantage over the CPU version in terms of the execution time.
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A more detailed study of the results of the numerical experiments (see Figs. 8 and 9) shows that the
dependence of the program execution time both for the CPU and GPU is fairly well described by a power
dependence on the Maclaurin polynomial power t(k) = a + bk® with the value of the power index « of
the order of 2, depending on the number of bodies N, which is in overall agreement with the theoretical
estimate of the algorithm complexity (16). The values of a obtained by the least squares method for

different numbers of bodies are listed in Table 2.

The decrease in acpy from 2.4 to 1.3 with the number of bodies increased from 100 to 500 can be
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Table 2. Values of a for the CPU and GPU program versions

N 100 200 300 400 500
acpu 2.4 1.6 1.5 1.6 1.3
aGpu 1.2 1.7 1.9 1.9 2.0

explained by two factors. The first one is the fact that implementation of the Parker—Sochacki algorithm
is a linear code, which is well supported by hardware of the majority of modern CPUs. The second factor
is the presence of a long pipeline in the architecture of Intel Xeon processors. As a result, the efficiency
of program execution increases with increasing problem dimension. The opposite situation is observed
for agpy. As the problem dimension increases, the GPU resources in implementation of the SIMD
model of computations decrease, and the dependence of the execution time on the number of bodies N is
enhanced. Nevertheless, the GPU operates ten times faster than the CPU, even for the maximum values
of N.

CONCLUSIONS

The work performed shows that the Parker—Sochacki method can be efiectively implemented on
GPUs whose structure is similar to solvers with the SIMD architecture. In solving the N-body problem,
the computation time is smaller than that provided by the CPU version by a factor of 10—20 for N = 500.
For a fixed time step, an increase in the power of the Maclaurin—Taylor polynomial exerts a limited effect
on the solution accuracy and fairly rapidly reaches the level of computer accuracy in accordance with the
estimate of the residual term of the series. The values of the polynomial power of the order of 20 seem to
be practically feasible, though it depends on the stifiness of the integrated equation.
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