Sharp Penalty Mapping Approach to Approximate Solution of Variational Inequalities 1 Down with Penalty Functions !

E.A. Nurminski <nurminskiy.ea@dvfu.ru>

Far Eastern Federal University, School of Natural Sciences, Ajax St., Vladivostok, Russky Island, Russia

17th Baikal International Triennial School-Seminar "Methods of Optimization and Their Applications" July 31–August 6, 2017, Maksimikha Bay, Buryatia)

July 31, 2017

 1 This work is supported by Ministry of Science and Education of [RF, p](#page-0-0)r[ojec](#page-1-0)[t 1.76](#page-0-0)[58.](#page-1-0)[201](#page-0-0)[7/6.7](#page-35-0) $\,$ $2Q$

- • Motivations, notations and basic preliminaries;
- Superposing feasibility and optimality;
- Oriented and penalty mappings;
- Main reduction result:
- Algorithmic news.

つへへ

Main problem: predict network load.

Mainstream model: noncooperative equilibrium.

Equilibrium: such network load pattern, that nobody gains from changes in its transportation plans. Specifics:

- **•** High dimensionality
- Strong nonlinearity

Classic flow equilibrium model (BMW, $1950+)$

Setup:

- Transportation network: a directed graph $G = (V, E)$;
- SD-pairs: $W = S \times D$, supply-demand transportation requests, $S, D \subset V$;
- Demand pattern: $d: W \to \mathbb{R}_+$;
- P_w , $w \in W$ set of routs for a transportation request w over the network G;
- Unknowns: $x = \{x_p, p \in P_w, w \in W\}$ very large set of variables;

Equilibrium

no one route p wants to change its load as it negatively effects its terms of delivery.

∢ ロ ⊁ (何) (ミ) (ミ) (ニ)

 \equiv

For any $e \in E$ given vector $x = \{x_p, p \in P_w, w \in W\}$ calculate the edge load v_e :

$$
y_e = \sum_{p \in P^e} x_p, \ P^e \text{ is a set of routes, going by the edge } e \in E.
$$

determine the delay $\tau_e(\cdot)$ on this edge:

$$
\tau_e(x) = \Phi_e(y_e) = \Phi_e(y_e(x)).
$$

This delay takes place for averybody on this edge e, so the general situation can be described by the following picture.

Delay-Flow dependences are collectively known under the name

 \sim

- 4 重 8 - 4 重 8

 \leftarrow

 2990

э

Definition

An operator $F_X : E \to E$ is called Féjer (with respect to a given nonempty set X) if for any $z \in X$

$$
||F_X(x)-z||\leq ||x-z||.
$$

Let Fix(F_X) be a set of fixed points of operator F_X .

Theorem (Féjer, 1922)

$$
\text{Fix}(F_X)=\text{co}(X)
$$

KED KAP KED KED E LAGA

- Féjer, L. (1922). Uber die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen. Mathematische Annalen, 85(1), 41–48.
- Eremin, I. I. (2011). Methods for solving systems of linear and convex inequalities based on the Féjer principle. Proceedings of the Steklov Institute of Mathematics, 272(1), S36–S45.

Structure of a Fejer operator F_X , $X = \{z_1, z_2\}$

 QQ

后

To ensure convergence of FP toward a goal set V stronger attraction properties are required.

Definition

A F $\acute{\text{e}}$ ier operator F_X is called locally strong F $\acute{\text{e}}$ ier if for any $\bar{x} \notin V$ there exists a neighborhood of zero U and $\alpha < 1$ such that $||F_x(x) - v|| \leq \alpha ||x - v||$ for any $v \in V$ and $x \in \overline{x} + U$.

Structure of a locally strong Féjer operator

 QQ

Féjer processes (FP) are defined by the recursive relationship

$$
x^{k+1}=F_X(x^k), k=0,1,\ldots
$$

where x^0 is some starting point. Define distance dist $(x, X) = \min_{z \in X} ||z - x||$.

Theorem

Let the sequence $\{x^k, k=1,2,\dots\}$ is generated by the recursive correspondence $x^{k+1} = F_X(x^k), k = 0, 1, ...$ with arbitrary x^0 and locally strong Féjer operator F_X . Then $dist(x^k, X) \rightarrow 0$ when $k \rightarrow \infty$.

∢ 何 ゝ ∢ ヨ ゝ ∢ ヨ ゝ …

FP with disturbances:

$$
x^{k+1}=F_X(x^k+z^k), k=0,1,\ldots
$$

where $z^k\rightarrow 0$ is an *arbitrary* diminishing disturbance. Major result:

Theorem

If $F_X(\cdot)$ is a locally strong Féjer operator with respect to X then dist $(x^k, X) \to 0$ when $k \to \infty$.

Assuming some additional conditions wrt $\{z^k, k=0,1,\dots\}$ one can make the sequence $\{x^k, k=0,1,\dots\}$ to converge to specific parts of X .

Alba Esta Esta

Selective Feasibility Problem: find $x^\star \in X_\star \subset X$ Examples: constrained optimization, VIP, etc

Split SFP into 2 problems:

• General Feasibility:
$$
x^* \in X
$$

solved by $x^{k+1} = F_X(x^k)$, $k = 1, 2, ...$

2 Selective Feasibility:
$$
x^* \in X_*
$$

\nsolved by $x^{k+1} = F_X(x^k + z^k)$,

\n $z^k = \lambda_k G(x^k), \lambda_k \to 0$

If $G(\cdot)$ in a certain way is "pointing toward" X_{*} then we might have a chance to converge to X_{*} !

Definition

Set-valued mapping $D: E \rightarrow 2^E$ is called a strong locally restricted attractant of $X_\star\subset X$ if for each $x'\in X\setminus X_\star$ there exists a neighborhood of zero U such that,

$$
g(z-x)\geq \delta>0
$$

for all $z \in X_\star, x \in \mathsf{x}' + \mathsf{U}, \mathsf{g} \in D(\mathsf{x})$ and some $\delta > 0$.

Examples of such attractants are sub-differentials of convex functions and strongly monotone operators of variational inequalities.

A & Y B & Y B &

Attractant mapping

 4.17

Variational inequality problem

$$
G(x^{\star})(x-x^{\star})\geq 0, \quad x\in X
$$

superposed as 2 problems:

- **1** Feasibility: $x^* \in X$ $F_X(\cdot)$ — projection, penalty functions, ...
- **2** Optimality: $G(\cdot)$ VIP operator, gradient, ...

Resulting algorithms:

$$
x^{k+1} = F_X(x^k + \lambda_k G(x^k)), k = 1, 2, \ldots
$$

細い マチャマチャン キ

VIP split view

Feasibility mapping

Optimality mapping

 4.17

Nurminski Sharp Penalty Mapping Approach to Approximate Solution of Variation

 $2Q$

∍

VIP superposing — convergence conditions

Variational inequality problem

$$
G(x^{\star})(x-x^{\star})\geq 0, \quad x\in X
$$

Resulting algorithms:

$$
x^{k+1} = F_X(x^k + \lambda_k G(x^k)), k = 1, 2, \ldots
$$

Theorem

Let F_X — locally strong Féjer operator, $G - a$ strong locally restricted attractant of $X_{\star} \subset X$ and $\lambda_k \to 0$ when $k \to \infty$, $\sum_{k} \lambda_k = \infty$. Then dist $(x^k, X_*) \to 0$ when $\to \infty$.

- stepsize does not adapt itself to the concrete problem;
- convergence rate is of the order of $O(1/k)$;
- disbalance between feasibility and optimality increases when $\lambda_k \to 0$ as $k \to \infty$.
- What can be done ?
	- different ideas for stepsize regulation (quite computationaly expensive);
	- smoothing techniques;
	- approximate solutions;
	- something else.

$$
G(x)(x-z) \geq 0, x \in X, \forall z \in X \rightleftarrows \min F(x), x \in X
$$

Merit and gap functions:

- \bullet $F(x) = \max G(x)(x z)$, $z \in X$ Auslender, 1976
- "Saddle" function $L(x, z) = (f(x) - f(z) + (G(x) - f'(x))(x - z)$ Aucmuty, 1989 Larsson-Ptriksson, 1994
- $F(x) = -\min_{z \in x X} \{ G(x)z + \frac{1}{2}$ $\frac{1}{2}$ zHz $\}$, z $\in X$, Fukushima, 1992, 1996
- \bullet $F(x) = \phi_{\alpha}(x) \phi_{\beta}(x), \phi_{\alpha}(x) =$ max $_{z\in x-X}\{G(x)z+\frac{1}{2a}\}$ $\frac{1}{2\alpha}$ zHz $\}$ Peng, 1997, see also Konnov-Penyagina.

→ 何 ▶ → ヨ ▶ → ヨ ▶ │ ヨ │ つ&企

Find $x^* \in X$ such that: $G(x^*)(x-x^*)\geq 0$ VIP $G(x)(x-x^*)$ for all $x \in X$.

$$
G(x)(x-x^*)\geq 0
$$
 (PVIP)

Important

If G is monotone, then any solution of **PVIP** is a solution of VIP.

Assume that::

- \bullet $G(x)$ is monotone,
- VIP and PVIP have unique (and therefore conisiding) solutions

CALCE AND A TENNIS

Oriented mappings

Let $\mathcal{C}(E)$ is the space of convex compacts of E, and $G: X \rightarrow \mathcal{C}(E)$.

 $(g(x)-g(x^\star))(x-x^\star)\geq 0$ for all $x \in X$ and $g(x) \in G(x), g(x^{\star}) \in G(x^{\star})$

Definition

A set-valued mapping $G : E \to C(E)$ is called strongly oriented toward \bar{x} on a set X if for any $\epsilon > 0$ there is $\gamma_{\epsilon} > 0$ such that

$$
g_{\scriptscriptstyle X}(x-\bar{x})\geq \gamma_{\epsilon}
$$

for any $g_x \in G(x)$ and all $x \in X \setminus {\bar{x} + \epsilon B}$.

If G is oriented (strongly oriented) toward \bar{x} at all points $x \in X$ then we will call it oriented (strongly oriented) toward \bar{x} on X.

Note: if $\bar{x} = x^*$, a solution of PVIP, then G is oriented toward x^* on X by definition and the other way around.

オートリック きょうしょう こうしん こうしん こうしん こうしょう

Let F_X — feasibility, $G(x)$ — oriented "optimality" mappings and

$$
G(x,\epsilon)=\epsilon G(x)+P_X(x).
$$

Under rather common conditions

\n- \n
$$
\mathsf{Fix}(G(\cdot,\epsilon_k)) \to x^\star \in X_\star
$$
\n when $\epsilon_k \to +0$, $\sum_k \epsilon_k = \infty$.\n
\n- \n $\mathsf{Fix}(G(\cdot,\epsilon)) \subset X_\star + \gamma_\epsilon B$ \n with $\gamma_\epsilon \sim O(\epsilon)$.\n
\n

To ensure the desirable global behavior of iteration methods we need an additional technical assumption.

Definition

.

A mapping $G : E \to E$ is called long-range oriented toward a set X if there exists $\rho_G > 0$ such that for any $\bar{x} \in X$

$$
G(x)(x-\bar{x}) > 0 \text{ for all } x \text{ such that } ||x|| \ge \rho_G \qquad (1)
$$

We will call ρ_G the radius of long-range orientation of G toward X.

Definition

The set $K_X(x) = \{p : p(x - y) > 0$ for all $y \in X\}$ we will call the polar cone of X at a point x .

Enforced polarity:

Definition

Let $\epsilon \geq 0$ and $x \notin X + \epsilon B$. The set

$$
K_X^{\epsilon}(x) = \{p : p(x - y) \ge 0 \text{ for all } y \in X + \epsilon B\}
$$

will be called ϵ -strong polar cone of X at x.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Define a composite upper semicontinuos mapping for the whole F

$$
\tilde{K}_{X}^{\epsilon}(x) = \begin{cases}\n\{0\} & \text{if } x \in X \\
K_{X}(x) & \text{if } x \in cl \{\{X + \epsilon B\} \setminus X\} \\
K_{X}^{\epsilon}(x) & \text{if } x \in \rho_{F}B \setminus \{X + \epsilon B\}\n\end{cases}
$$

モミチ

性

э

 $2Q$

Now we define a sharp penalty mapping for X as

$$
P_X^{\epsilon}(x) = \left\{ \begin{array}{cc} \tilde{K}_X^{\epsilon}(x) \cap p : ||p|| = 1 & x \notin \text{int}\{X\} \\ \{0\} & \text{otherwise.} \end{array} \right.
$$

 QQ

性

Lemma

Let $X \subset E$ is closed and bounded. G is monotone and long-range oriented toward X with the radius of orientability $\rho_{\bm{G}}$ and strongly oriented toward solution $\bm{\mathsf{x}}^\star$ of $\bm{\mathsf{PVIP}}$ on X with the constants $\gamma_e > 0$ for $\epsilon > 0$, satisfies conditions of the slide [\(24\)](#page-23-0) and $P_X^{\epsilon}(\cdot)$ is a sharp penalty of the slide [29.](#page-28-0) Then for any sufficiently small $\epsilon > 0$ there exists $\lambda_{\epsilon} > 0$ and $\delta_{\epsilon} > 0$ such that for all $\lambda > \lambda_{\epsilon}$ a penalized mapping $G_{\lambda}(x) = G(x) + \lambda P^{\epsilon}_{X}(x)$ satisfies the inequality $g_{\mathsf{x}}(\mathsf{x} - \mathsf{x}^\star) \geq \delta_{\epsilon}$ for all $\mathsf{x} \in \rho_{\mathsf{G}}B \setminus \{\mathsf{x}^\star + \epsilon B\}$ and any $g_x \in G_\lambda(x)$.

→ イラン イヨン イヨン

Define the following subsets of E :

$$
X_{\epsilon}^{(1)} = X \setminus \{x^* + \epsilon B\},
$$

\n
$$
X_{\epsilon}^{(2)} = \{\{X + \epsilon B\} \setminus X\} \setminus \{x^* + \epsilon B\},
$$

\n
$$
X_{\epsilon}^{(3)} = \rho_G B \setminus \{\{X + \epsilon B\} \setminus \{x^* + \epsilon B\}\}.
$$

which cover $\rho_{\bm{G}}B\setminus\{\bm{\mathsf{x}}^\star+\epsilon B\}$ and show that there is λ_ϵ which guarantees

$$
g_{\mathsf{x}}(\mathsf{x}-\mathsf{x}^{\star})\geq \delta_{\epsilon}>0
$$

in each of these subsets for any $g_x \in G_\lambda(x)$.

Algorithmic details: polar cone

The most common ways:

• by projection onto set X :

$$
x-\Pi_X(x)\in K_X(x)
$$

where $\Pi_X(x) \in X$ is the orthogonal projection of x on X,

• by subdifferential calculus if $X = \{x : h(x) \le 0\}$. Under Slater condition $h(y) < 0$ for all $y \in \text{int}\{X\}$ and

$$
0 < h(x) - h(y) \leq g_h(x)(x - y) \text{ for any } y \in \text{int}\{X\}.
$$

By continuity $0 < h(x) - h(y) \leq g_h(x)(x - y)$ for all $y \in X$ which means that $g_h \in K_X(x)$.

イ何 メ ミ メ イヨ メ

Algorithmic details: Minkowski projection

Find some $x^c \in \text{int}\{X\}$ and use it to compute Minkowski function

$$
\mu_X(x,x^c)=\inf_{\theta\geq 0}\{\theta:x^c+(x-x^c)\theta^{-1}\in X\}>1\text{ for }x\notin X.
$$

Then by construction $\bar{x} = x^c + (x - x^c) \mu_X(x, x^c)^{-1} \in \partial X$, i.e. $h(\bar{x}) = 0$ and for any $g_h \in \partial h(\bar{x})$ the inequality $g_h \bar{x} \geq g_h y$ holds for any $y \in X$. By taking $y = x^c$ obtain $g_h \bar{x} \geq g_h x^c$ and therefore

$$
g_h\bar{x} = g_hx^c + g_h(x - x^c)\mu_X(x, x^c)^{-1} = \mu_X(x, x^c)^{-1}g_hx + (1 - \mu_X(x^c))^2g_hx + \mu_X(x, x^c)^{-1}g_hx.
$$

Hence $g_h x \geq g_h \bar{x} \geq g_h y$ for any $y \in X$, which means that $g_h \in K_X(x)$. 桐 トライモ トライモ トリー

Easy: It can be approximated from above (included into) by the relaxed inequality $X + \epsilon B \subset \{x : h(x) \leq L\epsilon\}$ where L is a Lipschitz constant in an appropriate neighborhood of X.

つへへ

After construction of the mapping G_{λ} , oriented toward solution x^* of VIP on the whole space E except ϵ -neighborhood of x^\star we can use it in an iterative manner like

$$
x^{k+1}=x^k-\theta_kf^k, \ f^k\in G_{\lambda}(x^k), \ k=0,1,\ldots,
$$

where $\{\theta_k\}$ is a certain prescribed sequence of step-size multipliers.

The hope is that the sequence of $\{x^k\}, k = 0, 1, \ldots$ will converge to at least the set $X_\epsilon = x^\star + \epsilon B$ of approximate solutions.

A & Y B & Y B &

Taking everything granted and computable execute the major loop of the algorithm:

while The limit is not reached do

Generate a next approximate solution x_{k+1} :

$$
x^{k+1} = \begin{cases} x^k - \theta_k f^k, & f^k \in G_\lambda(x^k), & \text{if } \|x^k\| \leq 2\rho_G \\ x^0 & \text{otherwise.} \end{cases}
$$

Increment iteration counter $k \rightarrow k + 1$;

end

Complete: accept $\{x^k\}, k = 0, 1, \ldots$ as an approximate solution of VIP.

Of course the main remaining problem is to prove that it really works. But it is a different story . . .