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Transportation problems

Main problem: predict network load.
Mainstream model: noncooperative equilibrium.
Equilibrium: such network load pattern, that nobody gains
from changes in its transportation plans.
Specifics:

High dimensionality

Strong nonlinearity
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Classic flow equilibrium model (BMW, 1950+)

Setup:

Transportation network: a directed graph G = (V ,E );

SD-pairs: W = S × D, supply–demand transportation
requests, S ,D ⊂ V ;

Demand pattern: d : W → R+;

Pw ,w ∈ W — set of routs for a transportation request w
over the network G ;

Unknowns: x = {xp, p ∈ Pw ,w ∈ W } — very large set of
variables;

Equilibrium

no one route p wants to change its load as it negatively effects
its terms of delivery.
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Costs and Effects for BMW-model

For any e ∈ E given vector x = {xp, p ∈ Pw ,w ∈ W }
calculate the edge load ye :

ye =
∑
p∈Pe

xp, P
e is a set of routes, going by the edge e ∈ E .

determine the delay τe(·) on this edge:

τe(x) = Φe(ye) = Φe(ye(x)).

This delay takes place for averybody on this edge e, so the
general situation can be described by the following picture.
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Fundamental Diagrams

Delay-Flow dependences are collectively known under the name

Fundamental Diagrams
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Féjer operators and processes

Definition

An operator FX : E → E is called Féjer (with respect to a
given nonempty set X ) if for any z ∈ X

‖FX (x)− z‖ ≤ ‖x − z‖.

Let Fix(FX ) be a set of fixed points of operator FX .

Theorem (Féjer, 1922)

Fix(FX ) = co(X )
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Structure of a Fejer operator FX , X = {z1, z2}

Fix(FX)

z2

z1

x

FX(x)

z1
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Locally strong Féjer operator

To ensure convergence of FP toward a goal set V stronger
attraction properties are required.

Definition

A Féjer operator FX is called locally strong Féjer if for any
x̄ /∈ V there exists a neighborhood of zero U and α < 1 such
that ‖FX (x)− v‖ ≤ α‖x − v‖ for any v ∈ V and x ∈ x̄ + U .
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Structure of a locally strong Féjer operator
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Féjer processes

Féjer processes (FP) are defined by the recursive relationship

xk+1 = FX (xk), k = 0, 1, . . .

where x0 is some starting point.
Define distance dist(x ,X ) = minz∈X ‖z − x‖.

Theorem

Let the sequence {xk , k = 1, 2, . . . } is generated by the
recursive correspondence xk+1 = FX (xk), k = 0, 1, . . . with
arbitrary x0 and locally strong Féjer operator FX . Then
dist(xk ,X )→ 0 when k →∞.
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Féjer processes with disturbances

FP with disturbances:

xk+1 = FX (xk + zk), k = 0, 1, . . .

where zk → 0 is an arbitrary diminishing disturbance. Major
result:

Theorem

If FX (·) is a locally strong Féjer operator with respect to X
then dist (xk ,X )→ 0 when k →∞.

Assuming some additional conditions wrt {zk , k = 0, 1, . . . }
one can make the sequence {xk , k = 0, 1, . . . } to converge to
specific parts of X .
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Use of disturbances: general idea

Selective Feasibility Problem: find x? ∈ X? ⊂ X
Examples: constrained optimization, VIP, etc

Split SFP into 2 problems:

1 General Feasibility: x? ∈ X
solved by xk+1 = FX (xk), k = 1, 2, . . .

2 Selective Feasibility: x? ∈ X?
solved by xk+1 = FX (xk + zk),

zk = λkG (xk), λk → 0

If G (·) in a certain way is ”pointing toward” X? then we might
have a chance to converge to X? !
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Attractants

Definition

Set-valued mapping D : E → 2E is called a strong locally
restricted attractant of X? ⊂ X if for each x ′ ∈ X \ X? there
exists a neighborhood of zero U such that,

g(z − x) ≥ δ > 0

for all z ∈ X?, x ∈ x ′ + U , g ∈ D(x) and some δ > 0.

Examples of such attractants are sub-differentials of convex
functions and strongly monotone operators of variational
inequalities.

Nurminski Sharp Penalty Mapping Approach to Approximate Solution of Variational Inequalities



Attractant mapping

X
G(x)

X?
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VIP superposing — general idea

Variational inequality problem

G (x?)(x − x?) ≥ 0, x ∈ X

superposed as 2 problems:

1 Feasibility: x? ∈ X
FX (·) — projection, penalty functions, . . .

2 Optimality: G (·) — VIP operator, gradient, . . .

Resulting algorithms:

xk+1 = FX (xk + λkG (xk)), k = 1, 2, . . .
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VIP split view

X

Feasibility mapping

X

X?

Optimality mapping
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VIP superposing — convergence conditions

Variational inequality problem

G (x?)(x − x?) ≥ 0, x ∈ X

Resulting algorithms:

xk+1 = FX (xk + λkG (xk)), k = 1, 2, . . .

Theorem

Let FX — locally strong Féjer operator, G — a strong locally
restricted attractant of X? ⊂ X and λk → 0 when k →∞,∑

k λk =∞. Then dist(xk ,X?)→ 0 when →∞.
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Shortcomings

stepsize does not adapt itself to the concrete problem;

convergence rate is of the order of O(1/k);

disbalance between feasibility and optimality increases
when λk → 0 as k →∞.

What can be done ?

different ideas for stepsize regulation ( quite
computationaly expensive );

smoothing techniques;

approximate solutions;

something else.
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VIP via Optimization

G (x)(x − z) ≥ 0, x ∈ X ,∀z ∈ X � minF (x), x ∈ X

Merit and gap functions:

F (x) = maxG (x)(x − z), z ∈ X Auslender, 1976

”Saddle” function
L(x , z) = (f (x)− f (z) + (G (x)− f ′(x))(x − z) Aucmuty,
1989 Larsson-Ptriksson, 1994

F (x) = −minz∈x−X{G (x)z + 1
2
zHz}, z ∈ X , Fukushima,

1992, 1996

F (x) = φα(x)− φβ(x), φα(x) =
maxz∈x−X{G (x)z + 1

2α
zHz} Peng, 1997, see also

Konnov-Penyagina.

Nurminski Sharp Penalty Mapping Approach to Approximate Solution of Variational Inequalities



VIP and PVIP

Find x? ∈ X such that:
G (x?)(x − x?) ≥ 0 VIP G (x)(x − x?) ≥ 0 (PVIP)

for all x ∈ X .

Important

If G is monotone, then any solution of PVIP is a solution of
VIP.

Assume that::

G (x) is monotone,

VIP and PVIP have unique ( and therefore conisiding)
solutions
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Oriented mappings

Let C(E ) is the space of convex compacts of E , and
G : X → C(E ).

(g(x)− g(x?))(x − x?) ≥ 0
for all x ∈ X and g(x) ∈ G (x), g(x?) ∈ G (x?)

Simple example
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Strongly oriented mappings

Definition

A set-valued mapping G : E → C(E ) is called strongly oriented
toward x̄ on a set X if for any ε > 0 there is γε > 0 such that

gx(x − x̄) ≥ γε

for any gx ∈ G (x) and all x ∈ X \ {x̄ + εB}.

If G is oriented (strongly oriented) toward x̄ at all points
x ∈ X then we will call it oriented (strongly oriented) toward x̄
on X .
Note: if x̄ = x?, a solution of PVIP, then G is oriented
toward x? on X by definition and the other way around.
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Composition of oriented and feasibility mappings

Let FX — feasibility, G (x) — oriented ”optimality” mappings
and

G (x , ε) = εG (x) + PX (x).

Under rather common conditions

Fix(G (·, εk))→ x? ∈ X? when εk → +0,
∑

k εk =∞.

Fix(G (·, ε)) ⊂ X? + γεB with γε ∼ O(ε).
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Long-range orientation

To ensure the desirable global behavior of iteration methods
we need an additional technical assumption.

Definition

A mapping G : E → E is called long-range oriented toward a
set X if there exists ρG ≥ 0 such that for any x̄ ∈ X

G (x)(x − x̄) > 0 for all x such that ‖x‖ ≥ ρG (1)

.

We will call ρG the radius of long-range orientation of G
toward X .
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Penalty: modified polar

Definition

The set KX (x) = {p : p(x − y) ≥ 0 for all y ∈ X} we will call
the polar cone of X at a point x .

Enforced polarity:

Definition

Let ε ≥ 0 and x /∈ X + εB . The set

K ε
X (x) = {p : p(x − y) ≥ 0 for all y ∈ X + εB}

will be called ε-strong polar cone of X at x .
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Globalization

Define a composite upper semicontinuos mapping for the
whole E :

K̃ ε
X (x) =


{0} if x ∈ X

KX (x) if x ∈ cl {{X + εB} \ X}

K ε
X (x) if x ∈ ρFB \ {X + εB}

Nurminski Sharp Penalty Mapping Approach to Approximate Solution of Variational Inequalities



Sharp penalty mapping

Now we define a sharp penalty mapping for X as

Pε
X (x) =

{
K̃ ε

X (x) ∩ p : ‖p‖ = 1 x /∈ int{X}
{0} otherwise.
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A key lemma

Lemma

Let X ⊂ E is closed and bounded, G is monotone and
long-range oriented toward X with the radius of orientability
ρG and strongly oriented toward solution x? of PVIP on X
with the constants γε > 0 for ε > 0, satisfies conditions of the
slide (24) and Pε

X (·) is a sharp penalty of the slide 29.
Then for any sufficiently small ε > 0 there exists λε > 0 and
δε > 0 such that for all λ ≥ λε a penalized mapping
Gλ(x) = G (x) + λPε

X (x) satisfies the inequality
gx(x − x?) ≥ δε for all x ∈ ρGB \ {x? + εB} and any
gx ∈ Gλ(x).
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The idea of the proof

Define the following subsets of E :

X
(1)
ε = X \ {x? + εB},

X
(2)
ε = {{X + εB} \ X} \ {x? + εB},

X
(3)
ε = ρGB \ {{X + εB} \ {x? + εB}}.

which cover ρGB \ {x? + εB} and show that there is λε which
guarantees

gx(x − x?) ≥ δε > 0

in each of these subsets for any gx ∈ Gλ(x).
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Algorithmic details: polar cone

The most common ways:

by projection onto set X :

x − ΠX (x) ∈ KX (x)

where ΠX (x) ∈ X is the orthogonal projection of x on X ,

by subdifferential calculus if X = {x : h(x) ≤ 0}. Under
Slater condition h(y) < 0 for all y ∈ int{X} and

0 < h(x)− h(y) ≤ gh(x)(x − y) for any y ∈ int{X}.

By continuity 0 < h(x)− h(y) ≤ gh(x)(x − y) for all
y ∈ X which means that gh ∈ KX (x).
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Algorithmic details: Minkowski projection

Find some xc ∈ int{X} and use it to compute Minkowski
function

µX (x , xc) = inf
θ≥0
{θ : xc + (x − xc)θ−1 ∈ X} > 1 for x /∈ X .

Then by construction x̄ = xc + (x − xc)µX (x , xc)−1 ∈ ∂X , i.e.
h(x̄) = 0 and for any gh ∈ ∂h(x̄) the inequality ghx̄ ≥ ghy
holds for any y ∈ X .
By taking y = xc obtain ghx̄ ≥ ghx

c and therefore

ghx̄ = ghx
c + gh(x − xc)µX (x , xc)−1 = µX (x , xc)−1ghx + (1− µX (x , xc)−1)ghx

c ≤
µX (x , xc)−1ghx + (1− µX (x , xc)−1)ghx̄ .

Hence ghx ≥ ghx̄ ≥ ghy for any y ∈ X , which means that
gh ∈ KX (x).
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What about X + εB ?

Easy:
It can be approximated from above (included into) by the
relaxed inequality X + εB ⊂ {x : h(x) ≤ Lε} where L is a
Lipschitz constant in an appropriate neighborhood of X .
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Iteration algorithm

After construction of the mapping Gλ, oriented toward
solution x? of VIP on the whole space E except
ε-neighborhood of x? we can use it in an iterative manner like

xk+1 = xk − θk f k , f k ∈ Gλ(xk), k = 0, 1, . . . ,

where {θk} is a certain prescribed sequence of step-size
multipliers.
The hope is that the sequence of {xk}, k = 0, 1, . . . will
converge to at least the set Xε = x? + εB of approximate
solutions.
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Bird’s eye view of the algorithm

Taking everything granted and computable execute the major
loop of the algorithm:

while The limit is not reached do
Generate a next approximate solution xk+1:

xk+1 =

{
xk − θk f k , f k ∈ Gλ(xk), if ‖xk‖ ≤ 2ρG
x0 otherwise.

Increment iteration counter k −→ k + 1;

end
Complete: accept {xk}, k = 0, 1, . . . as an approximate
solution of VIP.
Of course the main remaining problem is to prove that it really
works. But it is a different story . . .
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