Sharp Penalty Mapping Approach to Approximate Solution of Variational Inequalities ¹ Down with Penalty Functions !

E.A. Nurminski nurminskiy.ea@dvfu.ru

Far Eastern Federal University, School of Natural Sciences, Ajax St., Vladivostok, Russky Island, Russia

17th Baikal International Triennial School-Seminar "Methods of Optimization and Their Applications" July 31–August 6, 2017, Maksimikha Bay, Buryatia)

July 31, 2017

¹This work is supported by Ministry of Science and Education of RF, project 4.3658.2017/6.7 ()

- Motivations, notations and basic preliminaries;
- Superposing feasibility and optimality;
- Oriented and penalty mappings;
- Main reduction result;
- Algorithmic news.

Main problem: predict network load.

Mainstream model: noncooperative equilibrium.

Equilibrium: such network load pattern, that nobody gains from changes in its transportation plans.

Specifics:

- High dimensionality
- Strong nonlinearity

Classic flow equilibrium model (BMW, 1950+)

Setup:

- Transportation network: a directed graph G = (V, E);
- SD-pairs: W = S × D, supply-demand transportation requests, S, D ⊂ V;
- Demand pattern: $d: W \to \mathbb{R}_+$;
- *P_w*, *w* ∈ *W* set of routs for a transportation request *w* over the network *G*;
- Unknowns: x = {x_p, p ∈ P_w, w ∈ W} very large set of variables;

Equilibrium

no one route p wants to change its load as it negatively effects its terms of delivery.

For any $e \in E$ given vector $x = \{x_p, p \in P_w, w \in W\}$ calculate the edge load y_e :

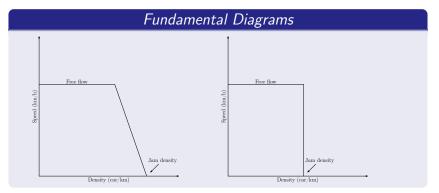
$$y_e = \sum_{p \in P^e} x_p, \ P^e$$
 is a set of routes, going by the edge $e \in E$.

determine the delay $\tau_e(\cdot)$ on this edge:

$$\tau_e(x) = \Phi_e(y_e) = \Phi_e(y_e(x)).$$

This delay takes place for averybody on this edge e, so the general situation can be described by the following picture.

Delay-Flow dependences are collectively known under the name



A B + A B +

э

Definition

An operator $F_X : E \to E$ is called Féjer (with respect to a given nonempty set X) if for any $z \in X$

$$||F_X(x) - z|| \le ||x - z||.$$

Let $Fix(F_X)$ be a set of fixed points of operator F_X .

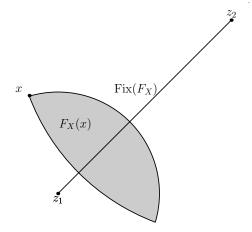
Theorem (Féjer, 1922)

$$\operatorname{Fix}(F_X) = \operatorname{co}(X)$$

- 4 同 6 4 日 6 - 日 6 - 日

- Féjer, L. (1922). Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen. Mathematische Annalen, 85(1), 41–48.
- Eremin, I. I. (2011). Methods for solving systems of linear and convex inequalities based on the Féjer principle. Proceedings of the Steklov Institute of Mathematics, 272(1), S36–S45.

Structure of a Fejer operator F_X , $X = \{z_1, z_2\}$

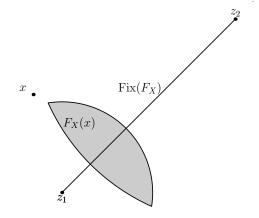


To ensure convergence of FP toward a goal set V stronger attraction properties are required.

Definition

A Féjer operator F_X is called locally strong Féjer if for any $\bar{x} \notin V$ there exists a neighborhood of zero U and $\alpha < 1$ such that $\|F_X(x) - v\| \le \alpha \|x - v\|$ for any $v \in V$ and $x \in \bar{x} + U$.

Structure of a locally strong Féjer operator



Féjer processes (FP) are defined by the recursive relationship

$$x^{k+1}=F_X(x^k), k=0,1,\ldots$$

where x^0 is some starting point. Define distance dist $(x, X) = \min_{z \in X} ||z - x||$.

Theorem

Let the sequence $\{x^k, k = 1, 2, ...\}$ is generated by the recursive correspondence $x^{k+1} = F_X(x^k), k = 0, 1, ...$ with arbitrary x^0 and locally strong Féjer operator F_X . Then $dist(x^k, X) \to 0$ when $k \to \infty$.

伺 と く ヨ と く ヨ と … ヨ

Féjer processes with disturbances

FP with disturbances:

$$x^{k+1}= \mathcal{F}_X(x^k+z^k), k=0,1,\ldots$$

where $z^k \rightarrow 0$ is an *arbitrary* diminishing disturbance. Major result:

Theorem

If $F_X(\cdot)$ is a locally strong Féjer operator with respect to X then dist $(x^k, X) \to 0$ when $k \to \infty$.

Assuming some additional conditions wrt $\{z^k, k = 0, 1, ...\}$ one can make the sequence $\{x^k, k = 0, 1, ...\}$ to converge to specific parts of X.

伺 ト イ ヨ ト イ ヨ ト

Selective Feasibility Problem: find $x^* \in X_* \subset X$ Examples: constrained optimization, VIP, etc

Split SFP into 2 problems:

• General Feasibility:
$$x^* \in X$$

solved by $x^{k+1} = F_X(x^k), \ k = 1, 2, ...$

Selective Feasibility:
$$x^* \in X_*$$
solved by $x^{k+1} = F_X(x^k + z^k)$,
 $z^k = \lambda_k G(x^k), \lambda_k \to 0$

If $G(\cdot)$ in a certain way is "pointing toward" X_{\star} then we might have a chance to converge to X_{\star} !

Definition

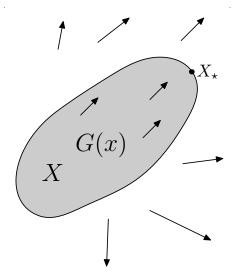
Set-valued mapping $D: E \to 2^E$ is called a strong locally restricted attractant of $X_* \subset X$ if for each $x' \in X \setminus X_*$ there exists a neighborhood of zero U such that,

$$g(z-x) \geq \delta > 0$$

for all $z \in X_{\star}, x \in x' + U, g \in D(x)$ and some $\delta > 0$.

Examples of such attractants are sub-differentials of convex functions and strongly monotone operators of variational inequalities.

Attractant mapping



Nurminski Sharp Penalty Mapping Approach to Approximate Solution of V

VIP superposing — general idea

Variational inequality problem

$$G(x^{\star})(x-x^{\star}) \geq 0, \quad x \in X$$

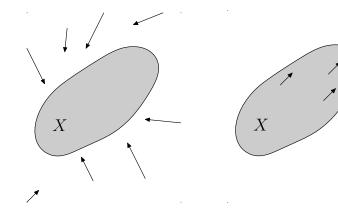
superposed as 2 problems:

- Feasibility: $x^* \in X$ $F_X(\cdot)$ — projection, penalty functions, ...
- **2** Optimality: $G(\cdot)$ VIP operator, gradient, ...

Resulting algorithms:

$$x^{k+1} = F_X(x^k + \lambda_k G(x^k)), k = 1, 2, \dots$$

VIP split view



Feasibility mapping

Optimality mapping

 $\langle X_{\star}$

Nurminski Sharp Penalty Mapping Approach to Approximate Solution of V

VIP superposing — convergence conditions

Variational inequality problem

$$G(x^{\star})(x-x^{\star})\geq 0, \quad x\in X$$

Resulting algorithms:

$$x^{k+1} = F_X(x^k + \lambda_k G(x^k)), k = 1, 2, \dots$$

Theorem

Let F_X — locally strong Féjer operator, G — a strong locally restricted attractant of $X_* \subset X$ and $\lambda_k \to 0$ when $k \to \infty$, $\sum_k \lambda_k = \infty$. Then $dist(x^k, X_*) \to 0$ when $\to \infty$.

- stepsize does not adapt itself to the concrete problem;
- convergence rate is of the order of O(1/k);
- disbalance between feasibility and optimality increases when $\lambda_k \rightarrow 0$ as $k \rightarrow \infty$.
- What can be done ?
 - different ideas for stepsize regulation (quite computationaly expensive);
 - smoothing techniques;
 - approximate solutions;
 - something else.

$$G(x)(x-z) \ge 0, x \in X, \forall z \in X \rightleftharpoons \min F(x), x \in X$$

Merit and gap functions:

- $F(x) = \max G(x)(x-z), z \in X$ Auslender, 1976
- "Saddle" function L(x,z) = (f(x) - f(z) + (G(x) - f'(x))(x - z) Aucmuty,1989 Larsson-Ptriksson, 1994
- $F(x) = -\min_{z \in x-X} \{G(x)z + \frac{1}{2}zHz\}, z \in X$, Fukushima, 1992, 1996
- $F(x) = \phi_{\alpha}(x) \phi_{\beta}(x), \phi_{\alpha}(x) = \max_{z \in x-X} \{G(x)z + \frac{1}{2\alpha}zHz\}$ Peng, 1997, see also Konnov-Penyagina.

VIP and PVIP

Find $x^* \in X$ such that: $G(x^*)(x - x^*) \ge 0$ VIP for all $x \in X$.

$$G(x)(x-x^{\star}) \geq 0$$
 (PVIP)

Important

If G is *monotone*, then any solution of PVIP is a solution of VIP.

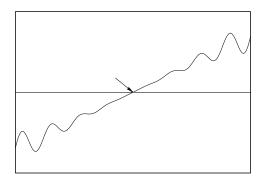
Assume that::

- G(x) is monotone,
- VIP and PVIP have unique (and therefore conisiding) solutions

Oriented mappings

Let $\mathcal{C}(E)$ is the space of convex compacts of E, and $G: X \to \mathcal{C}(E)$.

 $(g(x) - g(x^{\star}))(x - x^{\star}) \ge 0$ for all $x \in X$ and $g(x) \in G(x), g(x^{\star}) \in G(x^{\star})$



Definition

A set-valued mapping $G : E \to C(E)$ is called strongly oriented toward \bar{x} on a set X if for any $\epsilon > 0$ there is $\gamma_{\epsilon} > 0$ such that

$$g_x(x-\bar{x}) \geq \gamma_\epsilon$$

for any
$$g_x \in G(x)$$
 and all $x \in X \setminus \{\bar{x} + \epsilon B\}$.

If G is oriented (strongly oriented) toward \bar{x} at all points $x \in X$ then we will call it oriented (strongly oriented) toward \bar{x} on X.

Note: if $\bar{x} = x^*$, a solution of **PVIP**, then *G* is oriented toward x^* on *X* by definition and the other way around.

Let F_X — feasibility, G(x) — oriented "optimality" mappings and

$$G(x,\epsilon) = \epsilon G(x) + P_X(x).$$

Under rather common conditions

To ensure the desirable global behavior of iteration methods we need an additional technical assumption.

Definition

A mapping $G : E \to E$ is called long-range oriented toward a set X if there exists $\rho_G \ge 0$ such that for any $\bar{x} \in X$

$$G(x)(x-ar{x})>0$$
 for all x such that $\|x\|\geq
ho_G$ (1)

We will call ρ_G the radius of long-range orientation of G toward X.

Definition

The set $K_X(x) = \{p : p(x - y) \ge 0 \text{ for all } y \in X\}$ we will call the polar cone of X at a point x.

Enforced polarity:

Definition

Let $\epsilon \geq 0$ and $x \notin X + \epsilon B$. The set

$$\mathcal{K}^\epsilon_X(x) = \{ p: p(x-y) \geq 0 ext{ for all } y \in X + \epsilon B \}$$

will be called ϵ -strong polar cone of X at x.

Define a composite upper semicontinuos mapping for the whole E:

$$ilde{\mathcal{K}}^{\epsilon}_{X}(x) = \left\{egin{array}{ll} \{0\} & ext{if } x \in X \ & \mathcal{K}_{X}(x) & ext{if } x \in \mathsf{cl} \left\{\{X + \epsilon B\} \setminus X\} \ & \mathcal{K}^{\epsilon}_{X}(x) & ext{if } x \in
ho_{F}B \setminus \{X + \epsilon B\} \end{array}
ight.$$

Now we define a sharp penalty mapping for X as

$$P_X^{\epsilon}(x) = \begin{cases} \tilde{K}_X^{\epsilon}(x) \cap p : \|p\| = 1 & x \notin \inf\{X\} \\ \{0\} & \text{otherwise.} \end{cases}$$

3 N

Lemma

Let $X \subset E$ is closed and bounded, G is monotone and long-range oriented toward X with the radius of orientability ρ_G and strongly oriented toward solution x^* of **PVIP** on X with the constants $\gamma_{\epsilon} > 0$ for $\epsilon > 0$, satisfies conditions of the slide (24) and $P_X^{\epsilon}(\cdot)$ is a sharp penalty of the slide 29. Then for any sufficiently small $\epsilon > 0$ there exists $\lambda_{\epsilon} > 0$ and $\delta_{\epsilon} > 0$ such that for all $\lambda > \lambda_{\epsilon}$ a penalized mapping $G_{\lambda}(x) = G(x) + \lambda P_{x}^{\epsilon}(x)$ satisfies the inequality $g_x(x-x^*) > \delta_{\epsilon}$ for all $x \in \rho_G B \setminus \{x^* + \epsilon B\}$ and any $g_x \in G_{\lambda}(x)$.

- 4 同 2 4 日 2 4 日 2 4

Define the following subsets of E:

$$\begin{aligned} X_{\epsilon}^{(1)} &= X \setminus \{x^{\star} + \epsilon B\}, \\ X_{\epsilon}^{(2)} &= \{\{X + \epsilon B\} \setminus X\} \setminus \{x^{\star} + \epsilon B\}, \\ X_{\epsilon}^{(3)} &= \rho_{G} B \setminus \{\{X + \epsilon B\} \setminus \{x^{\star} + \epsilon B\}\}. \end{aligned}$$

which cover $\rho_G B \setminus \{x^* + \epsilon B\}$ and show that there is λ_ϵ which guarantees

$$g_x(x-x^\star) \geq \delta_\epsilon > 0$$

in each of these subsets for any $g_x \in G_\lambda(x)$.

Algorithmic details: polar cone

The most common ways:

• by projection onto set X:

$$x - \Pi_X(x) \in K_X(x)$$

where $\Pi_X(x) \in X$ is the orthogonal projection of x on X,

 by subdifferential calculus if X = {x : h(x) ≤ 0}. Under Slater condition h(y) < 0 for all y ∈ int{X} and

$$0 < h(x) - h(y) \le g_h(x)(x - y)$$
 for any $y \in int\{X\}$.

By continuity $0 < h(x) - h(y) \le g_h(x)(x - y)$ for all $y \in X$ which means that $g_h \in K_X(x)$.

Algorithmic details: Minkowski projection

Find some $x^c \in int\{X\}$ and use it to compute Minkowski function

$$\mu_X(x,x^c) = \inf_{\theta \ge 0} \{\theta : x^c + (x - x^c)\theta^{-1} \in X\} > 1 \text{ for } x \notin X.$$

Then by construction $\bar{x} = x^c + (x - x^c)\mu_X(x, x^c)^{-1} \in \partial X$, i.e. $h(\bar{x}) = 0$ and for any $g_h \in \partial h(\bar{x})$ the inequality $g_h \bar{x} \ge g_h y$ holds for any $y \in X$. By taking $y = x^c$ obtain $g_h \bar{x} \ge g_h x^c$ and therefore

$$g_h \bar{x} = g_h x^c + g_h (x - x^c) \mu_X (x, x^c)^{-1} = \mu_X (x, x^c)^{-1} g_h x + (1 - \mu_X (x, x^c)^{-1} g_h x + (1 - \mu_X (x, x^c)^{-1}) g_h \bar{x}.$$

Hence $g_h x \ge g_h \bar{x} \ge g_h y$ for any $y \in X$, which means that $g_h \in K_X(x)$.

Easy:

It can be approximated from above (included into) by the relaxed inequality $X + \epsilon B \subset \{x : h(x) \leq L\epsilon\}$ where L is a Lipschitz constant in an appropriate neighborhood of X.

After construction of the mapping G_{λ} , oriented toward solution x^* of VIP on the whole space E except ϵ -neighborhood of x^* we can use it in an iterative manner like

$$x^{k+1} = x^k - heta_k f^k, \ f^k \in G_{\lambda}(x^k), \ k = 0, 1, \dots,$$

where $\{\theta_k\}$ is a certain prescribed sequence of step-size multipliers.

The hope is that the sequence of $\{x^k\}, k = 0, 1, ...$ will converge to at least the set $X_{\epsilon} = x^* + \epsilon B$ of approximate solutions.

Taking everything granted and computable execute the major loop of the algorithm:

while The limit is not reached do | Generate a next approximate solution x_{k+1} :

$$x^{k+1} = \begin{cases} x^k - \theta_k f^k, \ f^k \in G_{\lambda}(x^k), & \text{if } \|x^k\| \le 2\rho_G \\ x^0 & \text{otherwise.} \end{cases}$$

Increment iteration counter $k \longrightarrow k + 1$;

end

Complete: accept $\{x^k\}, k = 0, 1, ...$ as an approximate solution of VIP.

Of course the main remaining problem is to prove that it really works. But it is a different story ...