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Abstract

This paper considers a conceptual version of a convex optimization algorithm which is based on

replacing a convex optimization problem with the root-finding problem for the approximate sub-

differential mapping which is solved by repeated projection onto the epigraph of conjugate function.

Whilst the projection problem is not exactly solvable in finite space-time it can be approximately

solved up to arbitrary precision by simple iterative methods, which use linear support functions

of the epigraph. It seems therefore useful to study computational characteristics of the idealized

version of this algorithm when projection on the epigraph is computed precisely to estimate the

potential benefits for such development. The key results of this study are that the conceptual

algorithm attains super-linear rate of convergence in general convex case, the rate of convergence

becomes quadratic for objective functions forming super-set of strongly convex functions, and

convergence is finite when objective function has sharp minimum. In all cases convergence is

global and does not require differentiability of the objective.

Keywords: convex optimization, conjugate function, approximate sub-differential, super-

linear convergence, quadratic convergence, finite convergence, projection, epigraph

Introduction

We consider a finite-dimensional nondifferentiable convex optimization problem (COP)

min
x∈E

f(x) = f? = f(x?), x? ∈ X? , (1)

where E denotes a finite-dimensional space of primal variables and f : E → R is a finite convex

function, not necessarily differentiable. As we are interested in computational issues related to solving

(1) mainly we assume that this problem is solvable and has nonempty and bounded set of solutions

X?.

This problem enjoys a considerable popularity due to its important theoretical properties and

numerous applications in large-scale structured optimization, discrete optimization, exact penalization

in constrained optimization, and others. This led to the development of different algorithmic ideas,

starting with the subgradient algorithm due to Shor (see [1] for the overview and references to earliest

works) and followed by conjugate subgradient algorithms [2, 3] bundle methods [4], space dilatation and

r-algorithms [5], ε-subgradient methods [6, 7, 8], V U -methods [9], proximal point algorithms [10] and

many others. These algorithms were widely used for solving many academical and practical problems,
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however only in a few cases the estimates for the rate of convergence were obtained. The most notable

case is probably algorithms of proximal point family (PPA), which use the smooth approximation of

the original COP by Moreau-Yosida regularization. In this case the superlinear rate of convergence

was attained both for conceptional and implementable versions of PPA [11].

In this paper we suggest another algorithm with attractive rate of convergence at the conceptual

level. It was considered by the author in [15]. and attracted our attention again due to positive

computational experiments [16, 17] and some new computational ideas [18, 19]. It seems therefore

useful to study computational characteristics of the idealized version of the algorithm when projection

is computed precisely to gauge the potential benefits for such development. The new analysis of the

conceptual algorithm showed that it does not only attains superlinear rate of convergence in quite gen-

eral convex case, but the rate of convergence becomes quadratic for objective functions strictly convex

in a vicinity of optimal solution, and the convergence is finite when objective has sharp minimum. In

all cases the convergence is global and does not require different ability of the objective.

1 Notations and Preliminaries

Throughout the paper we use the following notations: E is a finite dimensional euclidean space of

primal variables of any dimensionality. The inner product of vectors x, y from E is denoted as xy from

E. The cone of non-negative vectors of E is denoted as E+. The set of real numbers in denoted as R
and R∞ = R ∪ {∞}.

The norm in E is defined in a standard way: ‖x‖ =
√
xx and for X ⊂ E ‖X‖ = supx∈X ‖x‖. This

norm defines of course the standard topology on E with the common definitions of open and closed

sets and closure and interior of subsets of E. The interior of a set X is denoted as int(X).

The unit ball in E is denoted as B = {x : ‖x‖ ≤ 1}. The support function of a set Z ⊂ E is denoted

and defined as (Z)x = supz∈Z xz.

A vector of ones of a suitable dimensionality is denoted by e = (1, 1, . . . , 1). A standard simplex

{x : x ≥ 0, xe = 1} with x ∈ E,dim(E) = n is denoted by ∆E .

We use the standard definitions of convex analysis (see f.i. [4]) related mainly to functions f : E →
R∞: the domain of definition of dom f of a function f is the set dom f = {x : f(x) <∞}, the epigraph

epi f of a function f is a set epi f = {(µ, x) : µ ≥ f(x)} ⊂ R∞ × E.

Further on all functions are convex in a sense that their epigraphs are convex subsets of R∞ × E.

Definition 1 For a convex function f : E → R and fixed x ∈ E the set ∂f(x) = {g : f(y) − f(x) ≥
g(y − x) for all y ∈ dom f} is called a sub-differential of f at the point x.

The sub-differential of f is well-defined and is a closed bounded convex set for all x ∈ int(dom f). At

the boundary of dom f it may or may not exists. The sub-differential of f is also upper semi-continuous

as a multi-function of x when exists.

Definition 2 The directional derivative of a finite convex function f at point x in direction d is denoted

and defined as

∂f(x; d) = lim
δ→+0

(f(x+ δd)− f(x))/δ.

It is known from convex analysis that ∂f(x; d) = supg∈∂f(x) gd = (∂f(x))d.
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Definition 3 For a convex function f : E → R∞ the function

f?(g) = sup
x
{gx− f(x)} = (epi f)ḡ, where ḡ = (−1, g) ∈ R∞ × E (2)

is called a conjugate function of f .

The key result of convex analysis is that for a closed function f which epigraph epi f is a closed set

sup
g
{gx− f?(g)} = (epi f?)x̄ = f(x), (3)

where x̄ = (−1, x) ∈ R∞ × E.

It is also easy to see that if (epi f?)x̄ = gxx − f?(gx) then gx ∈ ∂f(x) and the other way around:

for ḡ = (−1, g) if (epi f)ḡ = gxg − f(xg) then xg ∈ ∂f?(g).

The trivial consequence of the Definition 3 is that f?(0) = − infx f(x) which is the key corre-

spondence used by the conjugate epi-projection algorithm, considered further on. As the conjugate

epi-projection algorithm operates in the conjugate space its convergence properties depend upon the

properties of the conjugate function of the objective. Therefore we introduce some additional classes

of primal functions to ensure the desired behavior of the conjugates.

Definition 4 Convex function f is called sup-quadratic with respect to a point x ∈ int(dom f) if there

exists a constant τ > 0 such that

f(y)− f(x) ≥ g(y − x) +
1

2
τ‖y − x‖2 (4)

for any g ∈ ∂f(x) and any y.

We will call τ the sup-quadratic characteristic of f at x. Notice that strongly convex functions are

sup-quadratic at any x from their domains, however a function f , sup-quadratic at some x, need not

to be strongly convex.

A symmetric definition can be given for sub-quadratic functions.

Definition 5 Convex function f is called sub-quadratic with respect to a point x ∈ int(dom f) if there

exists a constant τ > 0 such that

f(y)− f(x) ≤ g(y − x) +
1

2
τ−1‖y − x‖2 (5)

for any y ∈ dom f and some g ∈ ∂f(x).

Notice that it follows from this definition that the function f , sub-quadratic at point x is in fact

differentiable at this point. Of course not all functions differentiable at x are sub-quadratic.

Definitions 4 and 4 allow us to establish an important properties of conjugates functions for sup-

quadratic primals.

Lemma 1 Let f : E → R attains its minimum value f? at the point x? and f is sup-quadratic at

point x? with the positive sup-quadratic characteristic τ . Then f?(g) is sub-quadratic at g = 0 with the

corresponding sub-quadratic characteristic not lower then τ−1.

Proof. By definition for any x

1

2
τ‖x? − x‖2 ≤ f(x)− f? = f(x) + f?(0) (6)
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and hence

f?(g)− f?(0) = xgg − (f(xg) + f?(0)) ≤ xgg −
1

2
τ‖x? − xg‖2 (7)

for any xg ∈ ∂f?(g). Hence

f?(g)− f?(0) ≤ x?g + (xg − x?)g − 1
2τ‖x

? − xg‖2 ≤
x?g + supz{zg − 1

2τ‖z‖
2} = x?g + 1

2τ
−1‖g‖2.

(8)

Another interesting subclass of convex functions are those which have zero in the interior of the

subdifferential at the solution x? of a COP (1), that is 0 ∈ int(∂f(x?)). This condition is also known

as ”sharp minimum” and extended further on in [12] and others. The special attraction of this case is

that the known proximal method has then a finite termination [13] for such problems.

We notice now that the conjugate functions for objectives with sharp minimum have very simple

behavior in the vicinity of zero which also guarantees the finite termination of the conjugate epi-

projection algorithm as well.

Lemma 2 It solution x? of (1) is such that 0 ∈ int(∂f(x?)) then there is ρ > 0 such that f?(g) =

supx{gx− f(x)} = gx? − f(x?) for ‖g‖ < ρ.

Proof. The linearity of f?(g) for g small enough follows from the fact that sharp minimum condition

implies the existence of ρ > 0 such that 0 ∈ ∂(f(x?)− gx?) for any g ∈ ρB and therefore for such g

f?(g) = sup
x
{gx− f(x)} = gx? − f(x?)

is a linear function of g.

For additional results on connections between sharp minimum and properties of conjugate functions

see also [14].

2 Conjugate Epi-Projection Algorithm

As it was already mentioned the basic idea of the conjugate epi-projection algorithm consists in con-

sidering the convex problem (1) as the problem of computing the conjugate function of the objective

at the origin:

f?(0) = −min
x
f(x) = −f? = inf

(0,µ)∈epi f?
µ.

We suggest to use for computing f?(0) the algorithm based on projection onto the epigraph epi f?. This

idea demonstrates some promises for effective solution of (1) and suggests some new computational

ideas.

This version of the algorithm consists in execution of an infinite sequence of iterations, which

generates the corresponding sequence of points {(ξk, 0) ∈ R × E, k = 0, 1, . . . } with ξk → f?(0) when

k → ∞. For each of these iterations it calls a subgradient oracle which for any x ∈ E computes f(x)

and arbitrary g ∈ ∂f(x). Also it requires solution of nonlinear projection problem which makes the

algorithm strictly speaking unimplementable. However the analysis of the algorithm demonstrate its

potential and can show the ways to its practical implementations. The principal details of the iteration

of the conjugate epi-projection algorithm are given on the Fig. Algorithm 1. For better understanding

of these two operations they are illustrated on the Fig 1, 2.

Convergence of the Algorithm 1 is confirmed by the following theorem.
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Data: The convex function f : E → R, the epigraph epi f?, the current iteration number k and

the current approximation ξk ≤ f?(0).

Result: The next approximation ξk+1 such that ξk ≤ ξk+1 ≤ f?(0)

Each iteration consists of two basic operations: Project and Support-Update

Project. Solve the projection problem of the point (ξk, 0) onto epi f?:

min
(ξ,g)∈epi f?

{(ξ − ξk)2 + ‖g‖2} = (ξpk − ξk)2 + ‖gkp‖2

with the corresponding solution (ξpk, g
k
p) = (f?(gkp), gkp) ∈ epi f?. We demonstrate in the analysis

of the algorithm convergence that f?(0) ≥ ξpk > ξk if ξk < f?(0).

Support-Update Compute support function of epi f? with the support vector

zk = −(ξpk − ξk, gkp) ∈ R× E

(epi f?)zk = sup(µ,g)∈epi f?{−(ξpk − ξk)µ+ gkpg)} =

(ξpk − ξk) sup(µ,g)∈epi f?{−µ+
gkp

(ξpk − ξk)
g} = (ξpk − ξk) sup(µ,g)∈epi f?{−µ+ xkpg} =

(ξpk − ξk)(xkp g̃
k
p − f?(gkp)} = (ξpk − ξk)f(xkp),

where xkp = gkp/(ξ
p
k − ξk). Notice that as f is assumed to be a finite function this operation is

well-defined.

Finally we update the approximate solution with ξk+1 using the relationship

ξ̄k+1z
k = (epi f?)zk , where ξ̄k+1 = (ξk+1, 0) ∈ R× E,

which actually amounts to ξk+1 = −f(xkp), increment iteration counter k → k + 1, etc.

Algorithm 1: The basic iteration of the conceptual conjugate epi-projection algorithm algorithm

gkp

f ?(gkp)

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

ξk

Figure 1: Projection. Solution of pro-

jection problem min(ξ,g)∈epi f?{(ξ−ξk)2+

‖g‖2}.

gkp

f ?(gkp)

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

ξk

ξk+1

Figure 2: Support-Update. Compute

support function vk = (epi f?)zk and up-

date the approximate solution with ξk+1

ξk+1 = vk/(f
?(gkp)− ξk).
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Theorem 1 Let f be a finite convex function with the finite minimum f? = minx f(x) = −f?(0) and

ξk, k = 1, 2, . . . are defined by the Algorithm 1 with ξ0 < f?(0). Then limk→∞ ξk = f?(0) = −f?.

Proof. Assume that on k-th iteration we have ξk < f?(0) as the approximation of f?(0). According

to Algorithm 1 to construct the next (k + 1-th) approximation ξk+1 the point (ξk, 0) ∈ R×E is to be

projected onto epi f? first:

min
(ξ,g)∈epi f?

{(ξ − ξk)2 + ‖g‖2} = (ξpk − ξk)2 + ‖gkp‖2 (9)

As a result the auxiliary point (ξpk, g
k
p) = (f?(gkp , g

k
p) ∈ epi f? is obtained which satisfies optimality

conditions

(f?(gkp)− ξk)(ξ − ξpk) + gkp(g − gkp) ≥ 0 (10)

for any (ξ, g) ∈ epi f?.

It is easy to see that ξpk > ξk. Indeed the opposite strict inequality ξpk < ξk contradicts the optimality

of (ξpk, g
k
p) as in this case (ξk, g

k
p) = (ξpk + (ξk − ξpk), gkp) ∈ epi f?, and

(ξk − ξk)2 + ‖gkp‖2 < (ξk − ξpk)2 + ‖gkp‖2 = min
(ξ,g)∈epi f?

{(ξk − ξ)2 + ‖g‖2}.

If ξpk = ξk then R× {0} is strictly separable from epi f?:

ξ(ξk − ξpk) + 0gkp = 0 < ‖gkp‖2 ≤ µ(ξk − ξpk) + ggkp

for any (µ, g) ∈ epi f? as it follows from projection conditions. Hence 0 /∈ dom(f?) which contradicts

the assumptions of the theorem. According to Algorithm 1 the next approximation ξk+1 is determined

from the equality

(ξpk − ξk)(ξk+1 − ξk))− ‖gkp‖2 = (ξpk)− ξk)2 + ‖gkp‖2

which gives the following expression for ξk+1:

ξk+1 = ξk + ‖gkp‖2/(ξ
p
k − ξk) ≥ ξk,

and ξk+1 = ξk if and only if gkp = 0 which means that we already obtained the solution.

Repeating this operation we obtain the monotone sequence ξk, k = 0, 1, . . . such that

ξk ≤ ξk+1 ≤ f?(0), k = 0, 1, . . .

where inequalities turn into equalities only if either ξk = f?(0) or ξk+1 = f?(0) which of course makes

no difference. Under these conditions limk→∞ ξk = f?(0) which proves the convergence of the algorithm

1.

Theorem 1 established the convergence of the Algorithm 1 under very general conditions, however

to estimate the rates of convergence we need to derive more convenient estimates for decrease of

convergence indicators. This is provided by the following lemma.

Lemma 3 Let all assumptions of the theorem 1 be satisfied and ξk, k = 1, 2, . . . are defined by the

Algorithm 1 with ξ0 < −f?. Then

f?(0)− ξk+1 ≤ ‖gkp‖(∂f?(gkp ; zk)− ∂f?(0; zk)), k = 1, 2, . . . (11)

where zk = gkp/‖gkp‖.
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Proof. By construction ξk+1 = −f(xkp) = f?(gkp)− xkpgkp , where xkp = −gkp/(ξ
p
k − ξk). Then

f?(0)− ξk+1 = f?(0)− f?(gkp) + xkpg
k
p ≤ xkpgkp − x?gkp

for any x? ∈ ∂f?(0) = X?. Taking infinum of the right hand side with respect to x? ∈ ∂f?(0) obtain

f?(0)− ξk+1 ≤ xkpgkp − ∂f?(0; gkp) ≤ supx∈∂f?(gkp) xg
k
p − ∂f?(0; gkp) =

∂f?(gkp ; gkp)− ∂f?(0, gkp) = ‖gkp‖(∂f?(gkp ; zk)− ∂f?(0; zk), k = 1, 2, . . . ,
(12)

where xkp = −gkp/(ξ
p
k − ξk) and where we used linear positive homogeneity of ∂f?(·; ·) with respect to

its second argument.

The inequality (11) can be rewritten as

f?(0)− ξk+1 ≤ ‖gkp‖(∂f?(gkp ; zk)− ∂f?(0; zk)) = ‖gkp‖θ(gkp ; zk), (13)

and depending on properties of the accuracy multiplicator θ(gkp ; zk) the convergence rates of Algorithm

1 will have different estimates.

First we establish super-linear rate of convergence of Algorithm 1 for the most general case of a

finite objective function f .

Theorem 2 Let all assumptions of the theorem 1 be satisfied and ξk, k = 1, 2, . . . are defined by the

Algorithm 1 with ξ0 < −f?. Then f?(0)− ξk+1 ≤ λk(f?(0)− ξk) with λk → 0 when k →∞.

Proof. For the finite f and bounded nonempty X? in the problem (1) the conjugate function f? has

nonempty dom(f?) and 0 ∈ int(dom(f?)).

Then due to convergence of Algorithm 1 gkp → 0 when k → ∞. In the notations of Algorithm 1

f?(2gkp)− f?(gkp) ≥ f?(gkp)− f?(0) by convexity and hence

gkpx
? ≤ f?(gkp)− f?(0) ≤ f?(2gkp)− f?(gkp) ≤ pkgkp

for any x? ∈ ∂f?(0) and pk ∈ ∂f?(2gkp).

After division by ‖gkp‖ > 0 it gives

zkx? ≤ pkzk (14)

where zk = gkp/‖gkp‖.
Taking supremum of the left hand side of the inequality (14) with respect to x? ∈ ∂f?(0) obtain

∂f?(0; zk) ≤ zkpk

Assuming that zk → z•, pk → p• when k →∞ and gkp → 0 according to Theorem 1 obtain

∂f?(0; z•) ≤ z•p•.

As p• ∈ ∂f?(0) by upper semi-continuity of the sub-differential mapping ∂f?(·)

∂f?(0; z•) ≤ z•p• ≤ sup
p∈∂f?(0)

z•p = ∂f?(0; z•)

which implies that zkpk → ∂f?(0; z•) when k →∞ or

∂f?(gkp ; zk)− ∂f?(0; zk) = θ(gkp , z
k)→ 0 (15)

when k →∞. Putting everything together we obtain

f?(0)− ξk+1 ≤ θ(gkp , zk)‖gk‖, θ(gkp , zk)→ +0, when k →∞.
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As xk = −gkp/(f?(gkp)− ξk) than due to upper semi-continuity of ∂f?

‖gkp‖ = ‖xk‖(f?(gkp)− ξk) ≤ 2‖X?‖(f?(gkp)− ξk) ≤ 2‖X?‖(f?(0)− ξk) (16)

and consequently

f?(0)− ξk+1 ≤ 2θ(gkp , z
k)‖X?‖(f?(0)− ξk) = λk(f?(0)− ξk)

with λk → 0 when k →∞.

Next we consider the problem (1) with sup-quadratic objective function f .

Theorem 3 Let objective function f in problem (1) is locally sup-quadratic with sup-quadratic charac-

teristic τ and ξk, k = 1, 2, . . . are defined by the Algorithm 1 with ξ0 < −f?. Then limk→∞ ξk = f?(0)

(Algorithm 1 converges) and for k large enough f?(0)− ξk+1 ≤ τ−1(f?(0)− ξk)2 (that is convergence

is quadratic).

Proof. It follows from local sup-quadratic behavior of f that f? is differentiable in some neighborhood

U of 0. Therefore the subdifferentials of f?(g) are singletons and we can consider ∂f?(g) as just a vector.

It follows from sup-quadratic behavior of f that ‖∂f?(g)− ∂f?(0)‖ ≤ τ−1‖g‖. Consequently

∂f?(gkp ; zk)− ∂f?(0; zk) = ∂f?(gkp)zk − ∂f?(0)zk ≤ ‖∂f?(gkp)− ∂f?(0)‖ ≤ τ−1‖gkp‖ (17)

gives exactly f?(0)− ξk+1 ≤ C(f?(0)− ξk)2 with C = τ−1.

Finally we consider the case of a sharp minimum in (1), namely that 0 ∈ int(∂f(x?)).

Theorem 4 Let the objective function of (1) has a sharp minimum at solution point x?, all assump-

tions of the theorem 1 are satisfied and ξk, k = 1, 2, . . . are defined by the Algorithm 1 with ξ0 < −f?.

Then there exists k? such that ξk? = f?(0) = −f?.

Proof. According to Lemma 2 under conditions of sharp minimum there is a neighborhood U of g = 0

such that

f?(g) = sup
x
{gx− f(x)} = gx? − fstar}

is a linear function of g in U .

By Theorem 1 gkp ∈ U for k large enough and let k? − 1 is the first such index that gk
?−1
p ∈ U .

Then

∂f?(gk
?−1
p ; gk

?−1
p ) = gk

?−1
p x? = ∂f?(0; gk

?−1
p )

and hence

0 ≤ ξk? − f?(0) ≤ ∂f?(gk
?−1
p ; gk

?−1
p )− ∂f?(0; gk

?−1
p ) = 0

and Algorithm 1 terminates.

Conclusion

The conceptual version of the dual epi-projection algorithm has promising computational properties

which make it a viable candidate for developing implementable versions. First of all it guarantees

global super-linear convergence to the optimum in any solvable COP. Second, it provides quadratic

convergence and even finite termination without any changes in the algorithm for quite common types

of COPs: sup-quadratic, which strictly contain strongly convex, and COPs with sharp minimum. It is

worth to notice that the algorithm is absolutely parameter-free, use the first-order subgradient oracle
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only, and requires no specific knowledge of any specific characteristics of COP, like Lipshitz constants,

strong convexity parameter or close enough initial approximation.

The implementation perspectives for the algorithm depend upon the possibility to produce practical

version of the projection operator on epi f?. From the theoretical point of view it is easy to derive

accuracy estimates for its termination so it can be finitely solved for any required accuracy. It can

be used to preserve the overall rates of convergence in terms of Algorithm 1 iterations, however the

resulting computational complexity requires further investigations.
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