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Fejer processes are widely used to solve systems of
convex inequalities. The present-day theory of Fejer
processes and applications can be found in [1]. In the
general form, the Fejer process is an iterative scheme of
the form 

 

x

 

s

 

 + 1

 

 = 

 

F

 

(

 

x

 

s

 

), 

 

s

 

 = 0, 1, 2, 

 

…

 

, where 

 

F

 

(

 

x

 

)

 

 is a
Fejer operator. A distinctive feature of Fejer operators
and processes based on this scheme is that they are
attracted and eventually converge to certain sets. For
this reason, they are used as theoretical models of com-
putational algorithms. These processes are especially
useful when applied to decomposition and parallel
computations. For this reason, they are widely applied
to large-scale problems in computer tomography, radi-
ation therapy scheduling, pattern recognition, image
processing, and other areas associated with processing
large amounts of data. In this paper, we analyze the
behavior of Fejer processes with a diminishing distur-
bance generated by a small shift in the argument of the
Fejer operator. It is shown that, if 

 

F

 

(

 

x

 

)

 

 is a locally
strongly Fejer operator, then a diminishing disturbance
does not prevent convergence to an attracting set. At the
same time, such a disturbance can be used to furnish the
process with additional properties that ensure conver-
gence to certain subsets of the attracting set. In particu-
lar, based on this scheme, a new decomposition princi-
ple for optimization problems can be suggested that
does not require that the constraints possess a specific
structure.

CONVERGENCE OF FEJER SEQUENCES
WITH DISTURBANCES

The consideration below is associated primarily
with the finite-dimensional Euclidean space 

 

E

 

 equipped

with the inner product 

 

xy

 

 and the norm 

 

||

 

x

 

||

 

 = 

 

. Sit-xx

 

uations where a vector 

 

x

 

 is multiplied by a scalar fac-
tor 

 

α

 

 are usually clear from the context. A standard

 

N

 

-dimensional simplex is denoted by 
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N

 

 = 

 

w

 

i

 

 

 

≥

 

 0, 

 

i

 

 =

1, 2, …, 

 

N

 

;  = 1

 

. The neighborhood of zero is

an arbitrary open set containing 

 

0 

 

∈ 

 

E

 

.

In the standard manner, the Fejer operator is defined
with respect to a given set 

 

V

 

 as follows.

 

Definition 1.

 

 An operator 

 

F

 

: 

 

E

 

 

 

→

 

 

 

E

 

 is called Fejer
(with respect to a given set 

 

V

 

) if 

 

F

 

(

 

v

 

) = 

 

v

 

 for 

 

v

 

 

 

∈ 

 

V

 

 and

 

(1)

 

for all 

 

v

 

 

 

∈

 

V

 

.

The set 

 

V

 

 is usually clear from the context and is
hereafter assumed to be closed and bounded. In addi-
tion to the definition, we also assume that 

 

F

 

(

 

x

 

)

 

 is con-
tinuous on an open extension of 

 

V

 

.

Given a Fejer operator 

 

F

 

 and an initial point 

 

x

 

0

 

, we
can construct an iterative Fejer process 

 

x

 

s

 

 + 1

 

 = 

 

F

 

(

 

x

 

s

 

)

 

(

 

s

 

 = 0, 1, …

 

) that models a computational algorithm for
determining a point or points of 

 

V

 

 (the feasibility prob-
lem). Property (1), more exactly its various stronger
versions, guarantees that the elements of {

 

x

 

s

 

} converge
to 

 

V

 

 in a certain sense. More than 100 publications on
this subject were overviewed in [2] (and that list is far
from being complete). As a rule, for a Fejer process to
converge sufficiently strongly, it must have stronger
properties than those in Definition 1, such as quasi-
Fejerness, quasi-compressibility, etc. Bearing in mind
the subsequent applications, we propose the following
property of 

 

F

 

, which is also stronger than (1).

 

Definition 2.

 

 A Fejer operator 

 

F

 

 is called locally
strongly Fejer at a point 

 

 

 

∉ 

 

V

 

 if there exists a neigh-
borhood 

 

U

 

 of zero such that

 

(2)
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for all 

 

v

 

 

 

∈ 

 

V

 

, 

 

x

 

 

 

∈ 

 

 + 

 

U

 

, and some 

 

α

 

 < 1.

An operator 

 

F

 

(

 

x

 

)

 

 is called a locally strongly Fejer
operator if it is locally strongly Fejer at any point 

 

x

 

 

 

∉

 

V.
Of course, the attraction coefficient α depends on the
point chosen.

Theorem 1. Let V be a closed and bounded set; F be
a locally strongly Fejer operator; the sequence {xs}
generated by the recurrence relations

(3)

be bounded; and zs → 0 as s → ∞.

Then, for arbitrary x0, all the limit points of {xs}
belong to V.

This result can be extended to nonstationary Fejer
sequences of the form

(4)

where Fs is chosen from a finite family of Fejer opera-
tors, which allows us to use the apparatus of Fejer pro-
cesses in decomposition algorithms.

Theorem 2. Let � = {P1, P2, …, Pm} be a family of
operators Pi such that, for any x ∉ V, there exists Pi that
is locally strongly Fejer at x, zs → 0 as s → ∞, and Fs =

 (where  is a locally strongly Fejer operator at xs).

Then, if the sequence {xs} defined by (4) is bounded,
all its limit points belong to V.

Theorems 1 and 2 show that, under rather mild con-
ditions, the diminishing disturbance does not prevent
convergence to some set of fixed points, which is the
main result in the theory of Fejer processes. Below, we
present results concerning how small disturbances zs

can be used to make processes (3) and (4) converge to
certain subsets of V.

We introduce the concept of a localized attractant
as a vector field that is directed inside V toward a sub-
set of V.

Definition 3. A point-to-set mapping Φ: V → 2E is
called a localized attractant of Z ⊂ V at a point x if x ∈
V \ Z implies g(z – x) ≥ 0 for all g ∈ Φ(x) and z ∈ Z.

In fact, a somewhat stronger property is necessary to
substantiate the desired convergence.

Definition 4. An attractant Φ is called a strong local-
ized attractant at a point x' if x' ∈ V \ Z implies that there
exists a neighborhood U of zero such that

for all z ∈ Z, x ∈ x' + U, and g ∈ Φ(x) and for some δ > 0.

x

xs 1+ F x
s

zs+( ), s 0 1 2 …, , ,= =

xs 1+ Fs xs zs+( ), s 0 1 2 …,, , ,= =

Pis
Pis

g z x–( ) δ≥ 0>

Given a fixed Z, we say that Φ is a strong localized
attractant if the above property holds at each point of
V \ Z. Obviously, the constant δ depends on the point
chosen.

Theorem 3. Let F be a locally strongly Fejer oper-
ator; Φ be a bounded and upper semicontinuous local-
ized strong attractant of Z ⊂ V; and the sequence {xs}
be generated by

(5)

where x0 is an arbitrary initial state, λs → +0, and

 = ∞.

Then, if {xs} is bounded, all its limit points belong to Z.

As in the case of Theorem 1, this result can be
extended to nonstationary Fejer operators.

Theorem 4. Let Fs be a locally strongly Fejer oper-
ator at xs chosen from a finite family � = {P1, P2, …,
Pm} of continuous operators Pi such that Pi(v) = v (i =
1, 2, …, m) for all v ∈ V and, for any x ∉ V, there exists
Pi that is locally strongly Fejer at x; zs → 0 as s → ∞;
Φ be a bounded upper semicontinuous strong localized
attractant Z ⊂ V; and the sequence {xs} be generated by

(6)

where x0 is an arbitrary initial state, λs → +0, and

 = ∞.

Then, if {xs} is bounded, all its limit points belong to Z.

Theorems 1–4 are nontrivial and do not follow from
the existing theory of Fejer processes, since, generally
speaking, none of the processes given by (3)–(6) is
Fejer. The proofs of the theorems are based on general
convergence conditions for iterative processes [3].

Theorems 1–4 involve the rather restrictive and dif-
ficult-to-check (at first glance) global condition that the
sequence {xs} is bounded. However, the algorithmic
schemes (in Theorems 1–4) are easy to modify with the

help of a retract R: E →  that returns the process {xs}

to a bounded set  such that  ⊂ V + U. For example,

(7)

xs 1+ F xs λsΦ xs( )+( ),=

λs∑

xs 1+ Fs xs λsΦ xs( )+( ),=

λs∑

Ṽ

Ṽ Ṽ

xs 1+ F̃ xs zs+( )=

=  
F xs zs+( ), xs V U+∈

R xs( ) ys Ṽ  otherwise,∈=⎩
⎨
⎧
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where U is a bounded neighborhood of zero and ys is

chosen arbitrarily in .

GRADIENT PROJECTION METHOD
WITH DECOMPOSITION

OF THE CONSTRAINT SYSTEM

In practice, the above results can be applied as fol-
lows. On the one hand, the wide range of Fejer opera-
tors can be used to solve feasibility problems, which
guarantee that the limit points of the constructed
sequence {xs} belong to the feasible set V even in the
presence of a disturbance zs, s = 0, 1, 2, …. On the other
hand, attractants can be used to improve a feasible point
so as to make it closer to the set Z of distinguished
points in V. Examples are points that solve an optimiza-
tion or other problem on V. In this case, many methods
are available for determining, say, relaxation directions
in which the current feasible point approaches the solu-
tion set. The essence of Theorems 3 and 4 is that, under
their assumptions, schemes for deriving feasible points
and algorithms for achieving the distinguished subset
can be fairly easily combined.

In this context, as an application, we consider the
convex programming problem

(8)

where f is a convex finite objective function and V is a
convex feasible set. A general solution method for
problem (8) is to combine gradient steps and the projec-
tion onto V:

(9)

where Π is the projection onto V, but the last operation
is laborious for a general set and is rarely used, except
for very simple V. However, V is nearly always the
intersection of a family of convex subsets Vi, i = 1, 2,

…, N: V = . At least for feasibility problems, a

range of Fejer algorithms are available that use only
individual projections onto the elements Vi in the repre-

sentation V = . In contrast to V, the elements Vi

can be relatively simple sets, for example, half-spaces,
linear manifolds, rays, spheres, etc., so that the projec-
tion onto them is easy to implement computationally.

To apply Theorem 2 to projectors, it suffices to show
that they are locally strong Fejer.

Ṽ

f � f x( )
x V∈
min f x�( ), x� Z V ,⊂∈= =

xs 1+ Π xs λsg
s–( ), gs ∂f xs( ),∈=

Vi
i 1=

N

∩

Vi
i 1=

N

∩

Theorem 5. Let V be a closed bounded set repre-
sentable as the intersection of a finite or infinite family

of convex subsets: V = . Denote by Πτ(x) the pro-

jection of a point x onto Vτ.

Then, if x ∉ Vτ' for some τ' ∈ T, the operator F = Πτ'

is locally strongly Fejer at x.

Theorem 2 implies that, for a finite set T = {1, 2, …,
N}, the operator Fs constructed by choosing at the point
xs the operator Fs =  with xs ∉  guarantees that

the simple iteration xs + 1 = Fs(xs + zs) as applied to the
feasibility problem converges under fairly weak condi-
tions on the disturbance zs. Note that the method for
choosing  is of no importance. Therefore, in terms of

convergence theory, nearly all row-action methods [4],
such as cyclic projection, farthest set projection, inter-
mittent methods, maximum residual, etc., are covered
by Theorem 2.

However, Theorem 4 provides an additional advan-
tage due to the attractant Φ(xs) = –∂f (xs), i.e., a subdiffer-
ential mapping of the objective function in problem (8).
Since 0 ≤ f (x) – f� ≤ g(x – z) for g ∈ ∂f (x), x ∈ V ∩ Z, the
mapping Φ(·) is an upper semicontinuous bounded
localized strong attractant for Z.

Letting zs = λsgs, where gs ∈ Φ(xs) = –∂f(xs), and
applying Theorem 4 yields the convergence of various
alternating gradient projections onto the decomposition
elements of V:

(10)

where Πs is the projector onto a set  such that xs ∉

, λs → +0, and  = ∞. Based on this approach,

the gradient projection method (9) can be decomposed
according to (10) so that the hard-to-implement projec-
tion onto V is replaced by the projection onto Vi.

Using Theorem 5, we can show that the operator

(11)

where Πi is the projection onto Vi and w = (w1, w2, wN) ∈
∆N, is a locally strong Fejer operator.

Theorem 6. Let the operator F given by (11) be

such that  ≥ γ > 0. Then F(x) is a locally

strongly Fejer operator at the point x.

V τ
τ T∈
∩

Πis
Vis

Vis

xs 1+ Πs xs λsg
s–( ), s 0 1 2 …,, , ,= =

Vis

Vis
λs

s 0=

∞

∑

F x( ) wiΠi x( ),
i 1=

N

∑=

wi

i: x Vi∉
∑



758

DOKLADY MATHEMATICS      Vol. 78      No. 2      2008

NURMINSKI

Due to this result, we can substantiate and use par-
allel version of the gradient projection decomposition
method with a Fejer operator of the form (11)

where the projections can be performed in parallel. The

conditions imposed on the weights  in Theorem 6 are
satisfied, for example, when all of them are uniformly

bounded away from zero:  ≥ � > 0. For step multipli-

ers λs, it sufficient that λs → +0,  = ∞, which are

traditional conditions for nonsmooth gradient schemes.
However, numerical experience suggests that these

conditions lead to rather slow convergence and such
methods need to be further improved.
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