

367

ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2008, Vol. 48, No. 3, pp. 367–375. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © E.A. Nurminski, 2008, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2008, Vol. 48, No. 3, pp. 387–396.

Projection onto Polyhedra in Outer Representation

E. A. Nurminski

Institute for Automation and Control Processes, Far East Division, Russian Academy of Sciences,
ul. Radio 5, Vladivostok, 690041 Russia

e-mail: nurmi@dvo.ru

Received April 11, 2007; in final form, October 1, 2007

Abstract

—The projection of the origin onto an

n

-dimensional polyhedron defined by a system of

m

 ine-
qualities is reduced to a sequence of projection problems onto a one-parameter family of shifts of a poly-
hedron with at most

m

 + 1 vertices in

n

 + 1 dimensions. The problem under study is transformed into the
projection onto a convex polyhedral cone with

m

 extreme rays, which considerably simplifies the solu-
tion to an equivalent problem and reduces it to a single projection operation. Numerical results obtained
for random polyhedra of high dimensions are presented.

DOI:

10.1134/S0965542508030044

Keywords:

 orthogonal projection, linear system of inequalities, least norm vector

Let

X

 = {

x

:

Ax

≤

b

}

be a nonempty convex polyhedral subset of the

n

-dimensional Euclidean space

E

n

defined by a system of

m

 inequalities, where

A

 is an (

m

 ×

n

)

-

matrix and

b

 is an

m

-vector. Consider the prob-
lem

; (1)

i.e., we search for the least norm point

x

*

 in this set. To avoid triviality, it is assumed that

0

∉

X

. Problem (1)
arises in pattern recognition and data processing and is used in various computational procedures.

In this paper, we propose an algorithm for its solution that is based on the procedure of [1, 2] for project-
ing onto a polyhedron in internal representation, i.e., defined as the convex hull of its extreme points. A glo-
bal better-than-linear estimate for the convergence rate of this procedure was obtained in [2], and numerical
experiments have shown that it is quite efficient for problems of fairly large dimensions.

In principle, the original polyhedron

X

 can be initially represented as the convex hull of its extreme
points. However, the direct application of the algorithm [2] to this representation is inexpedient for several
reasons. First, the number of extreme points in this polyhedron is exponential in terms of the number of con-
straints (

m

) and is polynomial with an exponent of order

m

 in terms of the number of variables (

n

). Second,
the extreme points of

X

are given implicitly and their selection for the algorithm of [2] requires solving an
auxiliary linear programming problem. Despite the success of polynomial algorithms in linear program-
ming, this problem remains difficult. Moreover, these algorithms are poorly suited for series of modified
problems, which is an important factor in the case under study. The classical simplex method has an expo-
nential complexity bound and may lead to infinite iterations.

These circumstances motivated the study of alternative approaches. As a result, problem (1) was reduced
to a series of projections onto one-parameter shifts of a dual polyhedron with (

m

 + 1) vertices in an

n

-dimen-
sional space. A further analysis showed that it is sufficient to obtain such a projection for only one shift of
the polyhedral convex cone with

 m

 generatrices.

1. NOTATION AND PRELIMINARY RESULTS

All the vectors below are assumed to belong to finite-dimensional Euclidean spaces of suitable dimen-
sions. Given a set of vectors

D

 = {

a

1

, …,

a

m

}

, we denote by aff{

D

} its affine hull

1
2
--- x

2

x X∈
min

1
2
--- x*

2
=

aff D{ } x = µia
i

i 1=

m

∑ µi = 1
i 1=

m

∑,
⎩ ⎭
⎨ ⎬
⎧ ⎫

;=

368

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS

Vol. 48

No. 3

2008

NURMINSKII

by Co{

D

}, its conical hull

and by co{

D

} its convex hull

The scalar product of two vectors

x

 and

y

 is designated as

xy

. The case when a vector is multiplied by a scalar
is usually clear from the context.

Let

e

 be a vector of suitable dimension consisting of ones. Denote by

∆

m

 the

m

-dimensional standard
simplex

We show that problem (1) can be reduced to an equivalent unconditional optimization problem with a non-
smooth exact penalty.

Lemma 1.

There exists

Γ

> 0

 such that, for all

γ

≥

Γ

,

problem

 (1)

 is equivalent to

(2)

where

|

Ax

 – = max{0, –

b

)

i

}

and

a

(

Ax

 –

b

)

i

is the

ith coordinate of the vector Ax

 –

b.

Proof.

 The optimality conditions for problem (1) have the form

x

* +

u

*

A

 = 0, (3)

where

u

*

≥

 0

are optimal dual variables. In the nontrivial case,

u

*

e

 =

Γ

 > 0

. Conditions (3) are rewritten as

(4)

with

µ

* =

u

*/(

u

*

e

)

∈ ∆

m, and we set ψ(x) = |Ax – . Since x* is feasible, we have ψ(x*) = 0.

The complementarity conditions imply that µ*(Ax* – b) = 0. Therefore, for arbitrary x, we have

therefore, µ*A ∈ ∂ψ(x*). Consequently, condition (4) can be rewritten as

and, accordingly, x* minimizes the weighted objective function of problem (2). Since the solutions to prob-
lems (1) and (2) are unique, the converse is also true.

For γ > Γ, it follows that

which proves the optimality of x* for all γ > Γ. The proof is complete.

For further constructions, we add one more coordinate to the vector x, denoting the result by =

(x, xn + 1), and define the augmented matrix = ||A |b ||. Then, x ∈ X is equivalent to ∈ = { : ≤ 0,

Co D{ } x = µia
i

i 1=

m

∑ µi 0≥,
⎩ ⎭
⎨ ⎬
⎧ ⎫

;=

co D{ } x = µia
i

i 1=

m

∑ µi 0 µi = 1
i 1=

m

∑,≥,
⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

∆m s = s1 … sm, ,() : si = se = 1
i 1=

m

∑ si 0 i = 1 2 … m, , , ,≥,
⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

min
1
2
--- x

2 γ Ax b– ∞
+

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

,

b ∞
+

(Ax
i = 1 2 … n, , ,

max

x* Γµ*A+ 0=

b ∞
+

ψ x() ψ x*()– Ax b– ∞
+

max 0 Ax b–()i
i = 1 2 … n, , ,

max,{ } µ* Ax b–() µ* Ax* b–()–≥ µ*A x x*–();= = =

0 ∂ 1
2
--- x*

2 Γψ x*()+
⎩ ⎭
⎨ ⎬
⎧ ⎫

∈

1
2
--- x*

2 γψ x*()+
1
2
--- x*

2 Γψ x*() 1
2
--- x

2 Γψ x() 1
2
--- x

2 γψ x(),+≤+≤+=

x

A x X x Ax

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

PROJECTION ONTO POLYHEDRA IN OUTER REPRESENTATION 369

xn + 1 = = –1}, where en + 1 = (0, …, 0, 1) is the (n + 1)th basis vector. Moreover,

(5)

where = {λ : ≤ 1, λi ≥ 0, i = 1, 2, …, m}.

Theorem 1. Let u ∈ R be a scalar variable, (i = 1, 2, …, m) be the row vectors of the matrix , γ >
Γ, and

Then,

(6)

where

Proof. By Lemma 1 and (5), problem (2) can be transformed into

(7)

where D = {d : d = , λ ∈ } and = is the support function of D. It is easy to see that D

can be represented as the convex hull of its extreme points, which correspond to the rows of (i = 1, 2,
…, m) supplemented by a zero vector:

Note that the number of extreme points of D is only one more than the number of constraints.
The last problem in (7) can be transformed by applying the Lagrangian relaxation of the only constraint

in

(8)

where en + 1 = (0, …, 0, 1) and the sum γD + uen + 1 denotes the set {γd + uen + 1, d ∈ D}, i.e., the shift of γD
by u in the direction of en + 1.

It was noted in [3] that, for an arbitrary convex closed set C,

(see also [4, Section 3.2], although it was not explicitly indicated therein). Define

(9)

xe
n 1+

Ax b– ∞
+

Ax ∞
+

max 0 λAx
λ ∆m∈
max,{ } λAx,

λ ∆m

0
∈

max= = =

∆m
0 Σi 1=

m λi

A
i

A

Dγ u() co 0 γ a
i

i = 1 2 … m, , , , ,{ } ue
n 1+

+ Dγ ue
n 1+

.+= =

1
2
--- x

2

x X∈
min

1
2
--- x*

2
– φγ u() u–{ },

u
min= =

φγ u() 1
2
--- x

2
.

x Dγ u()∈
min=

min
1
2
--- x

2 γ Ax b– ∞
+

+
⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
--- x

2
1–() γ λAx

λ ∆n 1+

0
∈
max+

⎩ ⎭
⎨ ⎬
⎧ ⎫

xn 1+ 1 = 0+
min=

=
1
2
--- x

2 γD()x+
⎩ ⎭
⎨ ⎬
⎧ ⎫

xn 1+ 1 = 0+
min 1

2
---–

1
2
--- x

2 γ D()x+
⎩ ⎭
⎨ ⎬
⎧ ⎫

xn 1+ 1 = 0+
min

1
2
---,–=

λA ∆m
0

D()x dx
d Dγ∈
sup

Ai A

D co 0 Ai i = 1 2 … m, , , , ,{ }.=

1
2
--- x

2
Dγ()x+

⎩
⎨
⎧

u
max

x
min u xe

n 1+
1+()

⎭
⎬
⎫

+

= u
1
2
--- x

2
Dγ ue

n 1+
+()x+

⎩ ⎭
⎨ ⎬
⎧ ⎫

x
min+

⎩ ⎭
⎨ ⎬
⎧ ⎫

u
max ,

1
2
--- x

2
C()x+

⎩ ⎭
⎨ ⎬
⎧ ⎫

x
min–

1
2
--- x

2

x C∈
min=

φγ u() 1
2
--- x

2
,

x Dγ u()∈
min=

370

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

NURMINSKII

where

Applying this relation to (8), we finally obtain the equivalence

The usefulness of (6) depends on the properties of φγ and on how effectively it is computable.

2. PROPERTIES OF THE MINIMUM-DISTANCE FUNCTION
We examine the properties of φγ(u), which is called the minimum-distance function, and propose a finite

algorithm for solving the problem

(10)

Lemma 2. The function φγ is convex, smooth, and piecewise quadratic.
Proof. Let λ ∈ [0, 1] and νλ = λν' + (1 – λ)ν''. For λ ∈ [0, 1] and an arbitrary convex closed set B, we

have λB + (1 – λ)B = B. Therefore,

which proves the convexity of φγ. The smoothness of φγ(·) follows from the uniqueness of the solution to
problem (9). The piecewise quadratic property follows from the fact that its solution is a piecewise linear
function of u.

For the derivative of φγ(u) we have (u) = (u)en + 1 = (u), where (u) solves problem (9) and

(u) is the (n + 1)th coordinate of this vector.

In fact, (u) can be computed without using any additional operation in comparison with the compu-
tation of φγ(u). In these conditions, it is easy to organize a dichotomy process such that the uncertainty inter-
val for the solution to problem (10) decreases in geometric progression with a common ratio of 0.5, which
does not depend on the parameters of the problem. Since is finite piecewise linear, u* can also easily be

computed exactly for a sufficiently small interval [u1, ur] satisfying ul < ur, (ul) < 1, and (ur) > 1 and

having no more than two linearity segments for . Moreover, despite the potentially exponential number
of segments where φγ is piecewise quadratic, the number of iterations in the algorithm for solving problem
(10) is linear in terms of the number of constraints and logarithmic in terms of the number of variables. The
polynomial character of the entire computational procedure depends on the computational complexity of
φγ(u). According to [6], the quadratic programming problem with a fixed number of constraints is comput-
able in time, that is, polynomial in the length of the input, which is constructively demonstrated by applying
the linear-in-the-input-length ellipsoid method with O((n + m)4L) complexity, where L is the length of inte-
ger input data in binary form, n is the number of variables, and m is the number of constraints in the problem.

Computationally, the solution procedure for problem (10) can be considerably simplified by proceeding
from the bounded sets Dγ(u) to the cone Co{D}. It turns out that, despite its extremal method of specifica-
tion, the function

(11)

which is a direct analogue of φγ(u) in (9), becomes the simplest quadratic polynomial in φ(u) = α2u2.

Dγ u() γD ue
n 1+

+ co ue
n 1+ γ Ai ue

n 1+
+ i = 1 2 … m, , , , ,{ }.= =

1
2
--- x

2

x X∈
min – φγ u() u–{ }.

u
min=

φγ u() u–{ }
u

min φγ u*() u*.–=

φγ νλ() 1
2
--- z

2

z D νλ()∈
min

1
2
--- z

2

z λ D ν'e
n 1+

+() 1 λ–() D ν''e
n 1+

+()+∈
min= =

=
1
2
--- λz' 1 λ–()z''+

2

z' D ν'e
n 1+

+∈
z'' D ν''e

n 1+
+∈

min
1
2
--- λ z'

2
1 λ–() z''

2
+{ }

z' D ν'e
n 1+

+∈
z'' D ν''e

n 1+
+∈

min≤

= λ 1
2
--- z'

2

z' D ν'e
n 1+

+∈
min 1 λ–() 1

2
--- z''

2

z' D ν''e
n 1+

+∈
min+ λφγ ν'() 1 λ–()φγ ν''(),+=

φγ' x* xn 1+* x*

xn 1+*

φγ'

φγ'

φγ' φγ'

φγ'

φ u() x
2
,

x Co D() ue
n 1+

+∈
min=

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

PROJECTION ONTO POLYHEDRA IN OUTER REPRESENTATION 371

Indeed, let x*(u) = z*(u) + uen + 1 be a solution to problem (11) with z*(u) ∈ Co(D). Then, by the opti-
mality conditions, for any z ∈ Co(D), we have

Multiplying this inequality by τ2, where τ = u'/u > 0 with u' > 0, yields

Since τCo(D) = Co(D),

for any z ∈ Co(D). Therefore, after replacing u with u', the solution to problem (11) becomes x*(u') =
(u'/u)z*(u) + u'en + 1. Hence, x*(u) = u(w* + en + 1) for some w* ∈ CoD independent of u and, accordingly,
φ(u) = ||w* + en + 1||2u2 = α2u2, which was to be proved. Note also that φ(u) ≤ φγ(u) for any γ and u.

To justify the transition to conical hulls, we prove several simple assertions.

Lemma 3. If φγ() > φ() for some , then φγ(u) > φ(u) for all u > .

Proof. Let κ > 1 and u = κ > . Then, co{κDγ} ⊃ co{Dγ}. Therefore,

i.e.,

which was to be proved.

Corollary 1. If φγ() = φ() for some , then φγ(u) = φ(u) for all u ≤ .

This statement implies the following result.

Lemma 4. For any , there exists Γ such that φγ(u) = φ(u) for all u ≤ , where γ > Γ.

Proof. Let be the solution to problem (11) at u = , which obviously exists. Let Γ be such that ∈
Γco{D} = co{DΓ} ⊂ co{Dγ} for all γ > Γ. Obviously, φγ() = φ(). By Corollary 1 to Lemma 3, this proves
the lemma.

The lemmas stated above give the final expression for the solution to problem (1).
Theorem 2. It is true that

(12)

Proof. Indeed, φ(u) can be written as φ(u) = α2u2 = φ(1)u2, which implies that the solution to the problem

(13)

has the form u∗ = φ(1)/2. Therefore, φ∗ = φ(1)[φ(1) – 1]/2. Set = 2u∗. Defining Γ as the maximum of those
delivered by Lemmas 1 and 4 and assuming that γ > Γ, we obtain

z ue
n 1+

+() z* u() ue
n 1+

+() z* u() ue
n 1+

+
2
.≥

τz τue
n 1+

+() τz* u() τue
n 1+

+() τz u'e
n 1+

+() τz* u() u'e
n 1+

+()=

≥ τz* u() τue
n 1+

+
2

τz* u() u'e
n 1+

+
2
.=

z u'e
n 1+

+() τz* u() u'e
n 1+

+() τz* u() u'e
n 1+

+
2

≥

u u u u

u u

φγ u() 1
2
--- d ue+

2

d co Dγ{ }∈
min

1

κ2
----- 1

2
--- κd κue+

2

d co Dγ{ }∈
min= =

=
1

κ2
----- 1

2
--- d ue+

2

d co κDγ{ }∈
min

1

κ2
----- 1

2
--- d ue+

2

d co Dγ{ }∈
min≤ 1

κ2
-----φγ u();=

φγ u() κ2φγ u() κ2φ u()>≥ φ u(),=

u u u u

u u

zu* u zu*

u u

1
2
--- x

2

x X∈
min

1
2
---φ 1() φ 1() 1–[].=

φ* φ u() u–[]
u

min φ 1()u
2

u–[]
u

min= =

u

1
2
--- x

2

x X∈
min φγ u() u–[]

u
min min φγ u() u–[]

u 0 u,[]∈
min φγ u() u–[]

u u≥
min,{ }= =

= min φ u() u–[]
u 0 u,[]∈
min φγ u() u–[]

u u≥
min,{ }.

372

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

NURMINSKII

It is always true that φγ(u) ≥ φ(u) for u > . Therefore,

and, hence,

which was to be shown.

With the transition to the conical hulls of the rows of (i = 1, 2, …, m), the solution of problem (10)

is considerably simplified, but we now need efficient algorithms for the projection of onto

Co(D). A possible option is to apply the modification of the algorithm of [2] that is described below.

3. PROJECTION ONTO A CONE DEFINED BY GENERATRICES

Since the specific character of the shift vector is of no matter, we consider the general problem

(14)

where a is a shift vector and Co{D} = Co(a1, …, am) is the convex cone generated by the system of vectors
D = {a1, …, am}. We also consider the conical hulls of subsets of D, which are subcones of Co{D}. In this
context, we need to define a suitable subcone by analogy with the definition of a suitable subsimplex in [2].

Definition. The set Co{D'} with D' ⊂ D is called a suitable cone if

(15)

Note that any one-dimensional cone Co{ai} with aai ≤ 0 is suitable, since the problem

has the solution λ∗ = –aai/ ||ai ||2 ≥ 0 and, hence,

The algorithm with the required modifications is as follows.

Initialization. Set k = 0, zk = a, Jk = {ik}, and Dk = {ai, i ∈ Jk}, where ik is such that

If αk ≥ 0, then the point zk + 1 = a (or xk + 1 = 0) solves problem (14) and the algorithm halts. Otherwise, the
main iteration loop of the algorithm is executed. Note that Co{Dk} is a suitable cone.

Main iteration loop of the algorithm.
Step 1 (projection onto the subspace). Lk = a + aff{Dk}. Solve the problem

and check whether Co{Dk} is a suitable cone (xk + 1 ∈ Co{Dk}). Note that ||zk || > ||zk + 1|| in any case. If
Co{Dk} is suitable, then go to Step 2; otherwise, execute Step 3.

Step 2 (verification of optimality). If zk + 1ai ≥ 0 for all i = 1, 2 …, m, then zk + 1 is a solution to problem
(14). Indeed, zk + 1u ≥ 0 for any u ∈ Co{D} and zk + 1(a + u) = ||zk + 1||2 + zk + 1u ≥ ||zk + 1||2; i.e., the hyperplane
zk + 1x = ||zk + 1||2 separates zk + 1 from the set a + Co{D}, since zk + 1(x – zk + 1) ≥ 0 for x ∈ a + Co{D}. Moreover,
for any x ∈ a + Co{D}, we have the estimate

.

u

φγ u() u–[]
u u≥
min φ u() u–[]

u u≥
min φ u() u–[]

u 0 u,[]∈
min>≥

1
2
--- x

2

x X∈
min φ u() u–[]

u 0 u,[]∈
min φ u() u–[]

u
min φ*,= = =

Ai A

x
2

x Co D() ue
n 1+

+∈
min

z
2

z Co D() a+∈
min z*

2
x a+

2

x Co D()∈
min x* a+

2
,= = =

z
2

z a aff D'{ }+∈
min z

2

z a Co D'{ }+∈
min .=

a λa
i

+
2

λ
min

a λa
i

+
2

λ
min z

2

z a aff a
i

{ }+∈
min a λa

i
+

2

λ 0≥
min z

2
.

z a Co a
i

{ }+∈
min= = =

z
k
a

ik z
k
a

i

i = 1 2 … m, , ,
min αk.= =

z
2

z a Lk+∈
min z

k 1+ 2
x a+

2

x Lk∈
min x

k 1+
a+

2
= = =

x
2

z
k 1+

x z
k 1+

–+
2

z
k 1+ 2

2z
k 1+

x z
k 1+

–() z
k 1+

x–
2

z
k 1+ 2

≥+ += =

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

PROJECTION ONTO POLYHEDRA IN OUTER REPRESENTATION 373

Therefore, zk + 1 delivers . It is easy to see that the converse is also true: the optimality of zk + 1

implies zk + 1u ≥ 0 for all u ∈ Co{D}. The algorithm halts.
Otherwise, Step 4 is executed.
Step 3 (inner iteration loop for constructing a new basis). The inner iteration index is set equal to zero

(j = 0, ws = zk + 1, w–1 = zk, and Ks = Dk).
Inner iteration loop. Determine a maximum λs > 0 such that

Then, ws + 1 belongs to a face of Co{Ks} defined by the set of its generatrices Ks + 1 ⊂ Ks, where inclusion
is strict. It is easy to show that ||ws + 1||2 < ||ws – 1||. Solve the problem

If Co{Ks + 1} is a suitable cone, then set Dk + 1 = Ks + 1 and exit the inner loop. Otherwise, increment the
iteration index (s s + 1) and repeat the inner loop. Since Ks is strictly monotone decreasing, the inner
loop is executed only a finite number of times.

End of the inner iteration loop.
Step 4. Set Jk + 1 = Jk, increment the iteration index (k k + 1), and repeat Step 1.
End of the main iteration loop.
End of the algorithm.
The convergence of this algorithm is proved using its properties pointed out in its formulation (the norm

of the current projection decreases monotonically, the number of suitable cones is finite, etc.). The idea
behind the proof is similar to that used to prove the convergence of the algorithm in [2] and, for this reason,
is omitted.

4. NUMERICAL EXPERIMENTS
The application of the approach described is illustrated by projecting the origin onto high-dimensional

polyhedra defined by systems of inequalities with normally distributed random coefficients.
In these tests, the system of inequalities was constructed as a set of m random supporting planes of the

n-dimensional sphere of radius r = θ||x0 ||, θ ∈ (0, 1) centered at the random point x0 with normally distrib-
uted coordinates.

To avoid the trivial solution, the set of supporting planes was supplemented by a special one constructed
so that it strictly separated the origin from the polyhedron. For this purpose, we used a tangent plane to the
sphere passing through the origin. The support vector of this plane can be defined as = ρz – γx0 , where

ρ = , γ = θ2, and the random vector z is orthogonal to x0 and belongs to the (n – 1)-dimensional

unit sphere. The right-hand side of the inequality ≤ β was defined as β = = < 0, which

guaranteed that the origin was strictly separated from the feasible set. Simultaneously, we required that

 = –θ2 ||x0 ||2 < β, which ensured that the feasible set is nonempty.
In a sense, the use of this inequality was an overcautious strategy, since, for large m that considerably

exceed n, the randomly generated planes included a sufficient number of planes (about 30–50%) that sepa-
rated the origin from the feasible set. As a rule, this special plane was not included in the optimal solution,
which suggested that its presence in the constraint set did not lead to any specific features.

To facilitate the possibility of comparative experiments, we present the text of the data generator (used
to produce the matrix A and the right-hand-side vector b of the system) implemented in the matrix-vector
language octave (see [7]). The same generator can be used without modifications in MATLAB:

function [A b] = genAb(kseed, n, m, r)
randn(‘seed’, kseed);
A = zeros(m, n); b = zeros(m, 1);
v = randn(n, 1); v = v/norm(v);
x0 = randn(n, 1); sx2 = sumsq(x0);

z
2

z a Co D{ }+∈
min

w
s 1+ λsw

s
1 λs–()w

s 1–
Co Ks.∈+=

w
2

w a aff Ks 1+{ }+∈
min w

s 1+ 2
.=

a

θ 1 θ2
–

ax
1
2
---ax

0 1
2
---θ2

x
0 2

–

ax
0

374

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

NURMINSKII

sx = norm(x0);
zp = v - (v’*x0)*x0/sx2; zp = zp/norm(zp);
g = r*sqrt(1-rˆ2)*norm(x0);
z = g*zp - rˆ2*x0;
A(1, :) = z’; b(1) = -rˆ3*sumsq(x0)/2;
for i = 2:m
 z = randn(1, n); A(i, :) = z;
 b(i) = z*x0 + r*sx*norm(z);
endfor
endfunction

The function genAb has the following parameters: kseed is the initialize of the random-number generator
(an integer), n is the dimension of the space of variables, m is the number of inequalities, and r is the relative
size of the sphere. The function returns a constraint-set matrix A and a right-hand-side vector b. According
to trial runs, for identical values of kseed, this test was identically reproduced in Windows and Linux, but
different data were generated in PowerPC.

The numerical results obtained for the projection onto a random polyhedron are presented in the table.
Here, n is the dimension of the space of variables; m is the number of inequalities; min, max, and ave are

Table

n m min max ave std ntest fail

1000 1500 470 490 476.7143 7.0170 7 0

1000 1600 478 521 500.3000 14.5911 10 0

1000 1700 502 541 523.1000 11.3964 10 0

1000 1800 516 558 537.3000 14.8702 10 0

1000 1900 549 581 567.5556 11.7698 9 0

1000 2000 568 596 581.2857 10.7659 7 0

1500 1800 535 567 554.0000 12.9228 5 0

1500 1900 567 595 576.7500 12.7639 4 0

1500 2000 574 616 596.7500 17.6517 4 0

1500 2100 595 631 617.6667 19.7315 3 0

Figure.

0

–2

–4

–6

–8

–10

–12

–14

–16

–18
0 100 200 300 400 500

Iterations

y

1500 cnst

2000 cnst

a*x + b

c*x + d

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 48 No. 3 2008

PROJECTION ONTO POLYHEDRA IN OUTER REPRESENTATION 375

the minimum, maximum, and average numbers of iterations in a series of tests, respectively; std is the rms
deviation of the number of iterations from the average value; ntest is the number of solved test problems;
and fail is the number of problems we failed to solve.

The numerical results suggest that the projection method was fairly stable and the number of iterations
increased rather slowly as the number of variables and the number of constraints grew. For the standard
updating procedure used for the projector in the modification of the method [2], the complexity of the iter-
ation was O(n2).

The figure shows the details of the convergence process for problem (14) (projection onto the feasible
set) with 1000 variables in the case of 1500 and 2000 constraints. Specifically, the difference between the
norm of the projection and the minimum value (on a logarithmic scale) is plotted against the number of iter-
ations. It is seen that the convergence is linear during the major part of computations with acceleration at
the beginning and end of the process. The figure also displays linear approximation of convergence, which
gives estimates for the ratio of the geometric progression: it is equal to 0.9818 for 1500 constraints (solid
line) and to 0.9868 for 2000 constraints (dashed line). The deterioration is only 0.5%, which can be attrib-
uted to the uncertainty in the definition of itself. For the dimensions used, the value of the ratio can be
regarded as sufficiently small and comparable with theoretical estimates of projective methods.

Because of the large amount of the input data (25–35 Mb), we failed to perform comparative experiments
based on free versions of optimizing solvers, such as CPLEX [8] and MINOS. The commercial version of
CPLEX (ILOG CPLEX 10.2), which is based on a projective method, produces solutions to similar prob-
lems in a considerably smaller number of iterations (10–15), which is typical of interior point methods.
However, since the code is not available, it is not possible to determine why the number of iterations is so
small. The total computational efficiency cannot be compared either, since the implementation levels are
highly different.

ACKNOWLEDGMENTS

The author is grateful to I.L. Vasil’ev (the Institute of Systems Dynamics and Control Theory, Siberian
Branch, Russian Academy of Sciences) for performing the numerical experiments concerning the CPLEX-
based solution of the projection problem. This work was supported by the Far East Division of the Russian
Academy of Sciences, project no. 06-III-A-01-459.

REFERENCES
1. E. A. Nurminskii, “Method of Successive Projections for Solving the Least Distance Problem for Simplexes,” Ele-

ktron. Zh. “Issledovano v Rossii” 160, 1732–1739 (2004); http://zhurnal.ape.relarn.ru/articles/2004/160.pdf.
2. E. A. Nurminskii, “Convergence of the Suitable Affine Subspace Method for Finding the Least Distance to a Sim-

plex,” Zh. Vychisl. Mat. Mat. Fiz. 45, 1996–2004 (2005) [Comput. Math. Math. Phys. 45, 1915–1922 (2005)].
3. E. A. Nurminskii, “Acceleration of Iterative Methods of Protection onto a Polyhedron,” Dal’nevost. Mat. Sb., 1,

51–62 (1995).
4. C. Lemarechal and J.-B. Hiriart-Urruty, Convex Analysis and Minimization Algorithms II (Springer-Verlag, Berlin,

1993).
5. V. F. Dem’yanov and A. M. Rubinov, Fundamentals of Nonsmooth Analysis and Quasi-Differential Calculus

(Nauka, Moscow, 1990) [in Russian].
6. M. A. Kozlov, S. P. Tarasov, and L. G. Khachiyan, “Polynomial Solvability of Convex Quadratic Programming,”

Zh. Vychisl. Mat. Mat. Fiz. 20, 1319–1323 (1980).
7. Octave, http://www.octave.org.
8. ILOG CPLEX, http://www.ilog.com/products/cplex/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

