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Abstract

 

—A numerical method based on convex approximations that locally majorize a gap function
is proposed for solving a variational-like inequality. The algorithm is theoretically validated and the
results of comparison of its numerical efficiency to that of the conventional methods are presented.
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INTRODUCTION

At present, many problems in various areas of knowledge (such as mathematical physics, operations
research, mathematical economics, etc.) intensively use the apparatus of variational inequalities and their
generalizations. The problem of solving a variational inequality denoted by VI

 

(

 

G

 

, 

 

X

 

)

 

 is to find a point 

 

x

 

 

 

∈

 

X

 

 such that

 

(1)

 

where 

 

G

 

 : 

 

X

 

  

 

�

 

n

 

 is a given mapping, and 

 

X

 

 

 

⊆

 

 

 

�

 

n

 

 is a nonempty convex closed set (see [1–3]). The nota-
tion used in this paper will be explained below.

The apparatus for solving VI(

 

G

 

, 

 

X

 

) is well developed (e.g., see [4, 5] and references therein); however,
the applicability conditions for the conventional to generalization (1) are fairly strict: usually, strong mono-
tonicity and the Lipschitz condition for the mappings appearing in the generalized variational inequality or
their derivatives are required for convergence (see [6, 7]).

One of the approaches widely used for studying and solving VI(

 

G

 

, 

 

X

 

) is the construction of an equivalent
optimization problem and the application of mathematical programming methods for its solution. The gap
functions of the given inequality play an important part in this transformation (see, e.g., [8]).

This paper deals with a variational-like inequality that is one of the direct generalizations of problem (1)
and presents a method based on the constrained optimization of a gap function for its solution. The method
is theoretically validated and the numerical efficiency of the proposed approach is compared with that of the
conventional approaches. The main idea of the algorithm is to combine the trust region method (see [9])
with the construction of a convex approximating majorant of the gap function. Imposing fairly weak condi-
tions on the mappings defining a variational-like inequality, we can construct a weakly convex gap function
(see [10]). From the local optimization viewpoint, constructing convex majorants that are equivalent to such
gap functions coincides in essence with calculating the gap function itself. Though the algorithm is local
and requires a sufficiently accurate initial approximation, it does not require the mappings to possess mono-
tone-type properties.

1. NOTATION AND DEFINITIONS

This paper uses the following notation: 

 

�

 

n

 

 is an 

 

n

 

-dimensional Euclidean space, whose elements are col-

umn vectors; 

 

T

 

 is the transposition symbol; 

 

a

 

+

 

 = 

 

max

 

{

 

a

 

, 0} 

 

is the positive part of the number 

 

a

 

; 

 

||

 

x

 

||

 

 = 

GÚ x( ) y x–( ) 0 y∀ X ,∈≥

xÚx
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is the Euclidean norm of the vector 

 

x

 

; 

 

∇

 

F

 

(

 

x

 

) 

 

is the Jacobi matrix of the mapping 

 

F

 

 : 

 

�

 

n

 

  

 

�

 

m 

 

at the point

 

x

 

 (for 

 

m

 

 = 1, it is the gradient of 

 

F

 

(

 

x

 

) 

 

at 

 

x

 

); 

 

U

 

δ

 

( ) = {

 

x

 

 : 

 

||

 

x

 

 – 

 

||

 

 

 

≤

 

 

 

δ

 

} 

 

is the 

 

δ

 

-neighborhood of the point ;
and 

 

f

 

'(

 

x

 

, 

 

d

 

) = 

 

f

 

(

 

x

 

 + 

 

τ

 

d

 

) – 

 

f

 

(

 

x

 

)]/

 

τ

 

 is the directional derivative of the function 

 

f 

 

in the direction 

 

d

 

.

In what follows, we will need certain properties of weakly convex functions.

 

Definition 1

 

 (see [10]). The function 

 

f

 

 : 

 

X

 

  

 

� 

 

is called weakly convex on 

 

X

 

 if, for any 

 

x

 

 

 

∈

 

 

 

X

 

, there
exists a nonempty set 

 

f

 

(

 

x

 

)

 

 of vectors 

 

g

 

 such that

where 

 

|

 

r

 

(

 

x

 

, 

 

y

 

)

 

|

 

/

 

||

 

x

 

 – 

 

y

 

||

 

  0 

 

uniformly with respect to 

 

x

 

 as 

 

x

 

  

 

y

 

 

 

in each compact subset of 

 

X.

 

In this paper, the following properties of weakly convex functions are of great interest:
(1) any continuously differentiable function is weakly convex;
(2) if 

 

f

 

(

 

x) is a weakly convex function, then it has a directional derivative f '(x, d);
(3) assume that f(x, y) is a weakly convex (with respect to x) function for any fixed y ∈ X and Y(x) is a

set of y ∈ Y for which (x, y) = w(x); then, w(x) is a weakly convex function and w'(x, d) = (x,

y, d), where f '(x, y, d) is the directional derivative of f(x, y) with respect to x in the direction d.

2. VARIATIONAL-LIKE INEQUALITIES

Let X be a nonempty convex closed subset in �
n
 and G, F : X  �

m
 be single-valued continuous map-

pings. The problem of solving a variational-like inequality is denoted by VLI(G, F, X), and it is to find a
point x ∈ X such that

(2)

The term variational-like inequality was introduced in [11] for the problem of finding a point x ∈ X such
that

(3)

where G : X  �
n
 and η : X × X  �

n
 are given continuous mappings and X ⊆ �

n
 is a nonempty convex

closed set. Since, for η(y, x) = F(y) – F(x) and m = n, conditions (2) and (3) coincide, inequality (2) is also
a variational-like inequality.

It is shown in [11] that VLI(G, F, X) has a solution if one of the following conditions is fulfilled:
(1) X is a bounded set and, for any fixed x ∈ X, the function GÚ(x)F(y) is quasiconvex with respect to

y ∈ X;
(2) for any fixed x ∈ X, the function GÚ(x)F(y) is convex with respect to y ∈ X and there exists a compact

subset Ω ∈ X such that

for any x ∈ X\Ω . For example, the change of variables in (1) simplifying the feasible domain X yields vari-
ational-like inequalities (2). Furthermore, the determination of a generalized solution to a system of inequal-
ities (see [12]) and transport and economic equilibrium problems (see [13–15]) can be written in terms of
VLI(G, F, X).

One of the widely used methods of solving problem (1) is based on gap functions. This concept can eas-
ily be applied to variational-like inequalities (2).

Definition 2. A gap function for variational inequality (1) (variational-like inequality (2)) is a function
ϕ : X  R ∪ {+∞} such that

(i) ϕ(x) ≥ 0   ∀x ∈ X;
(ii) x* ∈ X is a solution to variational inequality (1) (variational-like inequality (2)) if and only if ϕ(x*) =

0 and x* ∈ X.
It is clear that, in this case, VLI(G, F, X) is equivalent to the constrained optimization problem

(4)

x x x
[

τ +∞→
lim

f y( ) f x( )– gÚ y x–( ) r x y,( ) y∀ X ,∈+≥

f
y Y∈
sup f '

y Y x( )∈
sup

GÚ x( ) F y( ) F x( )–[ ] 0 y∀ X .∈≥

GÚ x( )η y x,( ) 0 y∀ X ,∈≥

GÚ x( ) F y( ) F x( )–( ) 0 y∀ X∈<

ϕ x( ).
x X∈
min
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Variational inequality (1) is the subject of many works devoted to various types of gap functions. The
most general form of a gap function is proposed in [16]:

(5)

where f : �
n
  � ∪ {+∞} is a lower semicontinuous convex function differentiable on X. Note that (5) is

a convex programming problem; however, it is difficult to guarantee that ν(x) is convex and differentiable.
In [16], along with primal gap function (5), its dual formulation is considered:

(6)

Therefore, the equivalent optimization problem for (1) is to maximize (y) with respect to y ∈ X. In general,
(6) is not a convex programming problem; however, (y) is concave.

Particular forms of functions (5) and (6) with f ≡ 0 were proposed in [17] for finding equilibriums in the
problems of game theory and were studied later in [18] and other works. The main results were obtained for
the case when the supremum in (5) is attainable at a unique point and, consequently, the function ν(x) is
differentiable. Another way to make ν(x) differentiable is to use strongly convex functions f(x), for example,
f(x) = (1/2)||x||2 (see [19]). Differentiable gap functions were also studied in [8, 20] and other works.

In this paper, the following gap function is considered for VLI(G, F, X):

(7)

It is easy to see that this function satisfies conditions (i) and (ii) in Definition 2.
Indeed, for any x ∈ X, it holds that

(8)

If x* ∈ X is a solution to VLI(G, F, X), then

and, consequently,

However, (8) implies that ϕ(x*) ≥ 0; consequently, ϕ(x*) = 0.
On the contrary, assume that, for a certain x* ∈ X, it holds that

consequently, x* is a solution to the problem VLI(G, F, X).
Being conceptually simple, function (7) has a number of disadvantages: it is generally not a differentia-

ble function and, moreover, it is difficult to ensure its convexity for nonlinear G and F. However, if G and F
are continuously differentiable and the supremum in (7) is attainable, then ϕ(x) is a weakly convex function
(see [10]).

In this paper, to solve problem (4), we propose to construct a convex approximation of gap function (7),
which is almost equivalent to ϕ(x) from the viewpoint of its optimization in the neighborhood of an approx-
imate solution.

3. THE LOCAL CONVEX MAJORANT OF THE GAP FUNCTION

Below, we assume that the mappings G and F are twice continuously differentiable on X and the supre-
mum in (7) is attainable for any x ∈ X.

Fix a point  ∈ X and consider its δ-neighborhood Uδ( ), where δ > 0 is sufficiently small. The neigh-

borhood Uδ( ) is chosen so that, for a certain R > 0 and any y ∈ X, xδ ∈ Uδ( ), and z ∈ �
n
, it holds that

ν x( ) f x( ) f y( )– G x( ) ∇f x( )–[ ]Ú x y–( )+{ },
y X∈
sup=

ν̃ y( ) f x( ) f y( )– G x( ) ∇f x( )–[ ]Ú x y–( )+{ }.
x X∈
inf=

ν̃
ν̃

ϕ x( ) GÚ x( ) F x( ) F y( )–[ ].
y X∈
sup=

ϕ x( ) GÚ x( ) F x( ) F y( )–[ ]
y X∈
sup GÚ x( ) F x( ) F x( )–[ ]≥ 0.= =

GÚ x*( ) F x*( ) F y( )–[ ] 0 y∀ X∈≤

ϕ x*( ) GÚ x*( ) F x*( ) F y( )–[ ]
y X∈
sup 0.≤=

0 ϕ x*( ) GÚ x*( ) F x*( ) F y( )–[ ] GÚ x( ) F x*( ) F y( )–[ ]≥
y X∈
sup y∀ X ,∈= =

x x

x x

zÚH1 xδ( )z R z 2, zÚH2 xδ y,( )z R z 2,≤≤
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where H1(xδ) and H2(xδ, y) are the matrices of the second derivatives of the functions GÚ(x)F(x) and
−GÚ(x)F(y), respectively, taken at the point xδ.

Introduce the notation

(9)

and assume that Z(x) = {z : ||z|| ≤ δ, x + z ∈ X} is the set of feasible displacements from the point x whose
norms do not exceed δ.

Let z ∈ Z( ) and x =  + z. The quantity h(x, y) satisfies the bound

(10)

Consider the function

(11)

where the supremum is assumed to be attainable for all  ∈ X and z ∈ Z( ). Note that ψ( , z) is convex
with respect to z.

Bound (10) implies that

and, for z = 0, the inequality turns into an equality.
The following theorem establishes a relationship between variational-like inequality (2) and the function

ψ( , z).

Theorem 1. The point x* is a solution to the problem VLI(G, F, X) if and only if z = 0 is a solution to the
problem

(12)

and ψ(x*, 0) = 0.
Proof. Assume that x* is a solution to the problem VLI(G, F, X) and, consequently, x* is a solution to

problem (4) and ϕ(x*) = 0. Then, for any z ∈ Z(x*), we have

Thus, z = 0 is a solution to problem (12) and ψ(x*, 0) = 0.
Conversely, assume that z = 0 is a solution to problem (12) and ψ(x*, 0) = 0. Since x* ∈ X and it holds that

we have by property (ii) in Definition 2 that the point x* is a solution to VLI(G, F, X).
Denote by ϕ'(x, d) and ψ'( , z, d) the derivatives in the directions of functions (7) and (11) with respect

to the variables x and z, respectively; that is,

(13)

(14)

Limits (13) and (14) exist by the assumptions that the corresponding suprema in (7) and (11) are attain-
able, ϕ(·) is weakly convex, and ψ( , ·) is convex (see [10]).

By the following lemma, ψ( , z) is a good approximation of ϕ(x) in a neighborhood of .

h x y,( ) GÚ x( ) F x( ) F y( )–[ ],=

c0 x( ) GÚ x( )F x( ),=

C x( ) FÚ x( )∇G x( ) GÚ x( )∇F x( ),+=

A x z,( ) ∇G x( )z G x( ),+=

x x

h x y,( ) h x z+ y,( ) GÚ x z+( ) F x z+( ) F y( )–[ ] c0 x( ) C x( )z FÚ y( )A x z,( )–+= = =

+ 1/2( )zÚH1 xδ( )z 1/2( )zÚH2 xδ( )z+ c0 x( ) C x( )z R z 2 FÚ y( )A x z,( )–+ +≤ h̃ x y z, ,( ).=

ψ x z,( ) h̃ x y z, ,( )
y X∈
sup c0 x( ) C x( )z R z 2 FÚ y( )A x z,( ),

y X∈
inf–+ += =

x x x

h x z+ y,( )
y X∈
sup ϕ x z+( ) ψ x z,( ),≤=

x

ψ x* z,( )
z Z x*( )∈
min

ψ x* 0,( ) ϕ x*( ) ϕ x( )≤ ϕ x* z+( ) ψ x* z,( ).≤= =

0 ψ x* 0,( ) ϕ x*( ),= =

x

ϕ' x d,( ) ϕ x τd+( ) ϕ x( )–[ ]/τ,
τ +0→
lim=

ψ' x z d, ,( ) ψ x z, τd+( ) ψ x z,( )–[ ]/τ.
τ +0→
lim=

x

x x
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Lemma. Assume that  ∈ X. Then, for any d ∈ Z( ), it holds that

Proof. Assume that Y(x) is the set of y ∈ X for which the supremum in (7) is attained. Since ϕ(x) is weakly
convex, we have

Assume that ( , z) is the set of y ∈ X for which the supremum in (11) is attained. Similarly, due to the
weak convexity of ψ( , z) with respect to z, we have

When x =  and z = 0, the sets Y(x) and ( , z) coincide; that is, Y( ) = ( , 0). Consequently,

This lemma implies, in particular, that  is a stationary point for ϕ(x) if and only if z = 0 is a stationary
point of the function ψ( , z).

4. THE METHOD OF LOCAL CONVEX MAJORANTS

Using the fact that ϕ(x) (x ∈ Uδ( )) can be locally approximated by the convex majorant ψ( , z) (z ∈
Z( )) described by the lemma, we propose the following algorithm for solving variational-like inequality (2).

Algorithm Initialization

Choose a point x0 ∈ X and consider the set X0 = {x : ϕ(x) ≤ ϕ(x0)}. Determine δ > 0 such that, for any
 ∈ X0 and z ∈ Z( ), it holds that

Take the initial point  ∈ X0. Set k = 0.

Algorithm Iteration

Step 1. Solve the problem

(15)

Step 2. If zk = 0 and ψ( , 0) = 0, then  is a solution to VLI(G, F, X). If zk = 0 but ψ( , 0) ≠ 0, then
either VLI(G, F, X) has no solutions or we have found a local minimum of the gap function ϕ. The algorithm
stops.

Step 3. Set  =  + zk and k = k + 1 and go to Step 1.

The convergence of this algorithm is established by the following theorem.

Theorem 2. Assume that the vector x0 is such that the set X0 does not contain the local minima and sta-

tionary points of the gap function ϕ(x) that differ from the global ones. Then, the sequence { } generated
by the algorithm converges to a solution to VLI(G, F, X).

Proof. Let zk be a solution to problem (15). Then,

Thus, the sequence {ϕ( )} monotonically decreases and there exists a limit ϕ* = ( ).

x x

ϕ' x d,( ) ψ' x 0 d, ,( ).=

ϕ' x d,( ) h' x y d, ,( )
y Y x( )∈
sup hx' x y,( )d

y Y x( )∈
sup C x( )d FÚ y( )∇G x( )d[ ].

y Y x( )∈
inf–= = =

Ỹ x
x

ψ' x z d, ,( ) h'˜ x y z d, , ,( )
y Y x z,( )∈

sup h̃z' x y z, ,( )d
y Y x z,( )∈

sup C x( )d 2RzÚd FÚ y( )∇G x( )d[ ].
y Ỹ x z,( )∈

inf–+= = =

x Ỹ x x Ỹ x

ϕ' x d,( ) ψ' x 0 d, ,( ).=

x
x

x x
x

x x

ϕ x z+( ) ψ x z,( ).≤

x0

ψ xk z,( )
z Z x

k( )∈
min ψ xk zk,( ).=

xk xk xk

xk 1+ xk

xk

ϕ xk( ) ψ xk 0,( ) ψ xk zk,( ) ϕ xk zk+( )≥ ≥ ϕ xk 1+( ).= =

xk ϕ
k ∞→
lim xk
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Fix a certain z ∈ Z( ). By construction,

Suppose that, for an arbitrarily large K, there exist k > K, γ > 0, and  ∈ Z( ) such that ψ( , 0, ) ≤ −γ <
0; then,

for sufficiently small θ > 0. Fixing such a θ, we obtain

(16)

where ε = θγ > 0. Passing to the limit in (16) as ä  ∞, we obtain

which is impossible. In particular, this implies that

and, since Z(x) is lower semicontinuous, we obtain the inequality

for any z ∈ Z( ) and any limit point  of the sequence { }. Thus, at , the necessary extremum conditions
are satisfied for ϕ(x) (x ∈ X) and, consequently,  is a solution to problem (2).

5. A NUMERICAL EXAMPLE
To demonstrate the advantages of the representation of the original problem in the form of a variational-

like inequality and of the application of the method of local convex majorants, we compare the proposed
approach with the conventional one based on minimizing a regularized gap function. Consider the examples
of variational and variational-like inequalities generated by the optimization problem

(17)

where g(u) = (1/4)(u1 – u2)2 – (1/2)(u1 + u2) and U = {u : ||u||2 ≤ 1, u ≥ 0}, whose solution is the point ( /2,

/2).

The Regularization Method (RM)

Problem (17) is equivalent to the variational inequality

(18)

where QÚ(u) = (1/2)(u1 – u2 – 1, u2 – u1 – 1) = ∇g(u).
Set f(u) = (1/2)||u||2 in (5). In this case, a regularized gap function for (18) has the form

(19)

where aÚ(u) = (1/2)(1 + u1 + u2, 1 + u1 + u2). This regularization is most widely used, and ν(u) is the Fuku-
shima gap function (see [19]). Note that ν(u) is nonconvex in this case.

To minimize ν(u) for u ∈ U, we used the method of modified Lagrangian functions implemented in the
MINOS software package (see [21). The decrease of the values of ν(u) as the algorithm operates is shown
in the figure by the dashed line MR.

One can suppose that it is the discontinuity of the second derivatives of gap function (19) that does not
allow attaining a more than linear rate of convergence for the most part of the optimization process. The
computational speedup at the end of the computations occurs because ν(u) has continuous second deriva-
tives in a small neighborhood of a solution where the calculations are performed.

xk

ψ xk zk,( ) ψ xk θz,( )
θ 0 1,[ ]∈
min ψ xk 0,( ) θψ' xk 0 z, ,( ) o θ( )+[ ].

θ 0 1,[ ]∈
min+≤ ≤

zk xk xk zk

ψ xk zk,( ) ψ xk 0,( ) θ γ– o θ( )/θ+[ ]+ ψ xk 0,( ) θγ /2–≤ ≤

ϕ xk 1+( ) ψ xk 0 zk, ,( ) ψ xk 0,( ) ε–≤ ≤ ϕ xk( ) ε,–=

ϕ* ϕ* ε,–≤

ψ' xk 0 z, ,( )
z Z x

k( )∈
inf

k ∞→
lim ϕ' xk z,( )

z Z x
k( )∈

inf 0,≥
k ∞→
lim=

ϕ' x z,( ) ϕ' x z,( )
z Z x( )∈

inf ϕ' xk z,( )
z Z x

k( )∈
inf

k ∞→
lim 0≥ ≥ ≥

x x xk x
x

g u( ),
u U∈
min

2

2

QÚ u( ) v u–( ) 0 v U ,∈∀≥

ν u( ) u a u( )– 2 a u( ) 1–[ ]+
2 ,–=
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For comparison, original problem (17) was solved by the method of modified Lagrangian functions. The
decrease of the objective function g(u) is also shown in the figure by the solid line MMLF. It is clear that
both RM and MMLF approaches to solving (17) have similar computational efficiencies though the prob-
lems under study have significantly different properties. This seems to be due to the fact that, in both for-
mulations, the constraints imposed on U are nonlinear, which presents the main computational difficulty.

The Method of Local Convex Majorants (MLCM)

Since the method proposed in Section 4 can be applied to a more general class of variational inequalities

than (18), the feasible domain U can be simplified. The change of variables  = x1, and  = x2 reduces
inequality (18) to variational-like inequality (2) with the main mappings

(20)

and the feasible domain

(21)

Note that X is now described only by linear constraints (21).
Gap function (7) for (2) subject to (20) and (21) has the form

(22)

where µ(x) = (1/2)max{0, 1 –  + , 1 +  – }.

For  ∈ X and δ > 0, a locally convex majorant has the form

where z ∈ Z( ), µ( , z) = (1/2) max{0, a1( , z), a2( , z)}, c0( ), C( ), and A( , z) are defined in (9), while
a1( , z) and a2( , z) are the components of the vector function A( , z) for variational-like inequality (2) for
(20) and (21).

The point x0 = [0.2, 0.4]Ú was taken as an initial point and the parameters of the algorithm were δ = 0.1
and R = 0.5. The algorithm was implemented using the Matlab-like language of Octave (see [22]). The cut-
ting plane method (see [23]) was applied to solve convex optimization problem (15).

u1
2 u2

2

GÚ x( ) 1/2( ) x1 x2– 1– x2 x1– 1–,( ), FÚ x( ) x1 x2,( ),= =

X x : x1 x2 1 x1 0 x2 0≥,≥,≤+{ }.=

ϕ x( ) GÚ x( )F x( )
G x( ) , if G x( ) 0,>

µ x( ), otherwise,⎩
⎨
⎧

+=

x1 x2 x1 x2

x

ψ x z,( ) c0 x( ) C x( )z R x 2 A x z,( ) , if A x z,( ) 0,<
µ x z,( ), otherwise,⎩

⎨
⎧

+ + +=

x x x x x x x
x x x

0 5 10 15 20 25 30 35 40 45 50
Iterations/computations of functions

10–8

10–6

10–4

10–2

100

102
Objective function

MR

MMLF

MLCM

Figure.
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In the figure, the dotted line MLCM shows the decrease of the gap function ϕ(x) as a function of the algo-
rithm iterations. The results of numerical experiments demonstrate a much quicker convergence of the
MLCM in comparison with the RM and MMLF. It should be noted that the iterations in the MLCM are a
sufficiently complex procedure because optimization problem (15) must be solved at Step 1; however, the
efficiency of its solution can be significantly improved if the algorithm starts at a previous optimum or other
hot-start methods are used. Under these conditions, the total computational efficiency of the MLCM is
expected to be sufficiently high.

This work was supported by the “Leading Scientific Schools” Program (project no. NSh-9004.2006.1)
and by the Far East Division of the Russian Academy of Sciences (project no. 01-052).
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