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INTRODUCTION

Since the publication of Eremin’s fundamental works [1–3], the concept of Fejer processes has been suc-
cessfully used in numerous studies on the convergence of iterative processes designed for solving systems
of equalities/inequalities, optimization problems, etc. The present-day theory of Fejer processes can be
found in [4, 5]. In this paper, we analyze the behavior of Fejer processes with additional diminishing distur-
bances, i.e., recurrence sequences generated by relations of the form 

 

x

 

s

 

 + 1

 

 = 

 

F

 

(

 

x

 

s

 

 + 

 

z

 

s

 

)

 

, 

 

s

 

 = 

 

0, 1, …

 

, where

 

F

 

 belongs to a subclass of Fejer operators and 

 

z

 

s

 

 is an additional diminishing disturbance (

 

z

 

s

 

  0

 

 as 

 

s

 

  

 

∞

 

). It
is assumed that 

 

z

 

s

 

 is determined by the current state of the process 

 

x

 

s

 

. On the one hand, 

 

z

 

s

 

 can be viewed as
a noise. On the other hand, due to this disturbance, we can furnish the Fejer process with some desirable
properties, thus achieving an additional positive effect.

1. NOTATION AND DEFINITIONS

The consideration below is associated primarily with the finite-dimensional Euclidean space 

 

E

 

 equipped

with the inner product 

 

xy

 

 and the norm 

 

||

 

x

 

||

 

 = 

 

. Situations where a vector 

 

x

 

 is multiplied by a scalar factor

 

α

 

 are usually clear from the context. The real line is denoted by 

 

�

 

.

In what follows, we use the general convergence conditions for iterative processes [9], which are, in a
sense, a discrete version of the Lyapunov asymptotic stability conditions. According to these conditions, the
sequence {

 

x

 

s

 

} generated by an iterative process has a limit point in a given set 

 

X

 

∗

 

 if the following conditions
are satisfied.

 

Condition 1.

 

 The sequence {

 

x

 

s

 

} is bounded.

 

Condition 2.

 

 For each subsequence { } converging to 

 

x

 

' 
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X

 

∗

 

, there exists 

 

ε

 

 > 0 such that, for every

 

n

 

k

 

, there is an index 

 

m

 

k

 

 > 

 

n

 

k

 

 such that 

 

||
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Condition 3.

 

 There exists a continuous function 

 

W

 

(

 

x

 

)

 

 such that, for any subsequence { } converging

to 

 

x

 

' 

 

∉ 

 

X

 

∗

 

 and for the corresponding subsequence { } (which exists by Condition 2), there is a subse-
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quence {

 

p

 

k

 

} with 

 

n

 

k

 

 < 

 

p

 

k

 

 

 

≤

 

 

 

m

 

k

 

 such that

For each limit point of {

 

x

 

s

 

} to be in 

 

X

 

∗

 

, it is sufficient that the following two additional conditions hold.

 

Condition 4.

 

 If 

 

  

 

x

 

* 

 

∈ 

 

X

 

∗

 

, then 

 

||

 

 – 

 

||

 

  0

 

.

 

Condition 5.

 

 The set 

 

W

 

(

 

X

 

∗

 

) = {

 

W

 

(

 

x

 

*) : 

 

x

 

* 

 

∈ 

 

X

 

∗

 

}

 

 is such that 

 

�

 

\

 

W

 

(

 

X

 

∗

 

)

 

 is everywhere dense.

Meaningfully, Condition 2 prevents the iterative process {

 

x

 

s

 

} from being stuck at points that are not in

 

X

 

∗. Condition 3 implicitly forbids limit cycles that do not pass through points of X∗ and is an analogue of
the condition that the total derivative of the Lyapunov function along the trajectory of the dynamic process
is negative. Condition 4 prevents the points of {xs} from jumping away from the limit set X∗. Condition 5,

in conjunction with Conditions 1–4, guarantees the convergence of {W(xs)}. Together with Condition 3, this
prevents {xs} from having limit points that are not in X∗.

2. CONVERGENCE OF FEJER SEQUENCES WITH DIMINISHING DISTURBANCES

For the goals of this paper, the Fejer operator is defined with respect to a given set V as follows.
Definition 1. An operator F : E  E is called Fejer (with respect to a given set V) if F(v) = v for v ∈

V and x ∈ E
(1)

for all v ∈ V.
The set V is usually clear from the context and is hereafter assumed to be closed and (primarily for sim-

plicity) bounded. In addition to the definition, we also assume that F(x) is continuous on an open extension

of V.; i.e., it is assumed that there exists an open  such that V ⊂  and F(x) is continuous on . Since F(x)
is continuous on V by definition, we actually mean that F(x) is continuous on the boundary of V.

Given a Fejer operator F and an initial point x0, we can construct an iterative Fejer process xs + 1 = F(xs)
(s = 0, 1, …) that models a computational algorithm for determining a point or points of V. Property (1) or
rather its various stronger versions guarantee that the elements of {xs} converge to V in a certain sense.

Bearing in mind the subsequent applications, we propose the following properties of F, which are also
stronger than (1).

Definition 2. A Fejer operator F is called locally strongly Fejer if, for any  ∉ V, there exists a neigh-
borhood U of zero and a number α ∈[0, 1) such that

(2)

for all v ∈ V and x ∈  + U.

Theorem 1. Let V be a closed and bounded set; F be a locally strongly Fejer operator; the sequence {xs}
generated by the recurrence relations

xs + 1 = F(xs + zs), s = 0, 1, …, (3)

be bounded; and zs  0 as s  ∞. Then, for arbitrary x0, all the limit points of {xs} belong to V. 
Proof. The convergence is proved by verifying Conditions 1–5 with the set X∗ = V and the Lyapunov

function W(x) =  = ρ(x, V). Since Condition 1 holds by the theorem assumption, we begin the

verification from Condition 2.

Assume that there exists a subsequence  converging to x' ∉ V with ρ(x', V) ≥ 2δ > 0. A neighborhood
U is chosen so that, for x ∈ x' + 4U, condition (2) is satisfied with some α < 1 and ρ(x, V) ≥ δ > 0. If we

assume that for all s > nkxs ∈  + U ⊂ x' + 2U, then xs + zs ∈ x' + 4U for sufficiently large k and xs + 1 =
F(xs + zs) satisfies the relation

sup W x
pk( )

k ∞→
lim inf W x

nk( )
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for all v ∈ V, where β < 1, whenever ||zs || ≤ (1 – α)/α||xs – v || = γs. The right-hand side of the last inequality
is bounded below by a positive number: γs ≥ ρ(xs, V)(1 – q)/q ≥ δ(1 – α)/α > 0. Therefore, this inequality
holds for sufficiently large k.

Iterating the resulting inequality ||x s + 1 – v || ≤ β||xs – v || over s = nk, nk + 1, …, t – 1, we obtain ||x t –

v || ≤   0 as t  ∞, which contradicts ||xt – v || ≥ ρ(xt, V) ≥ δ > 0 since, by assumption,

xt ∈  + U ⊂ x' + 2U for all t > nk. This contradiction proves that, for any k, there exists mk such that

for some ε > 0 such that ||z || ≤ ε implies z ∈ U. This proves Condition 2.
Furthermore,

for θ = (1 – β)ρ( , V) ≥ (1 – β)δ > 0. Passage to the limit gives

i.e., Condition 3 holds with pk = mk.

It is easy to see that Condition 4 also holds. Indeed, let    ∈ V. Denote by v s the solution to the

problem . By construction,   0 as k  ∞ and, since V is bounded, ||F(  –

F( ))||  0. Moreover,

  0

as k  ∞, which proves Condition 4. Condition 5 is obviously fulfilled, since ρ(v, V) = 0 for all v ∈ V.
The proof is complete.

These results can be extended to nonstationary Fejer sequences of the form

xs + 1 = Fs(xs + zs), s = 0, 1, …, (4)

where Fs is chosen from a finite family of Fejer operators.

Corollary 1. � = {P1, …, Pm} is a family of operators Pi such that, for any x ∉ V, there exists Pi that is
locally strongly Fejer at x; zs  0 as s  ∞; and Fs = , where  is a locally strongly Fejer operator

at xs. Then, if the sequence {xs} is bounded, all its limit points belong to V. 
Proof. It repeats word for word the proof of Theorem 1 with the only difference being that the constant

α < 1 of the strong Fejer property for the operators Fs satisfies an estimate of the form

where I(x) is the set of i such that Pi is locally strongly Fejer at x with a constant αi < 1, is ∈ I(x). Here, x ∈
x' + 4U, where x' is a limit point of {xs} chosen to verify Conditions 2 and 3 and U is a sufficiently small
neighborhood of zero.

Theorem 1 shows that, under rather mild conditions, the diminishing disturbance does not prevent con-
vergence to some set of fixed points, which is the main result in the theory of Fejer processes. Below, we
show how diminishing disturbances can be used to make processes (3) and (4) convergent to certain subsets
of V.

We introduce the concept of a bounded attractant as a vector field that is directed inside V toward a subset
of V.

Definition 3. A point-to-set mapping Φ : V  E is called a bounded attractant of Z ⊂ V if g(z – x) ≥ 0
for all x ∈ V \ Z, g ∈ Φ(x), and z ∈ Z.

In fact, a somewhat stronger property is necessary to substantiate the desired convergence.

β
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Definition 4. An attractant Φ is called a strong bounded attractant of Z if, for any x' ∈ V \ Z, there exists
a neighborhood U of zero such that

for all z ∈ Z, x ∈ x' + U, and g ∈ Φ(x) and for some δ > 0.
Theorem 2. Let F be a locally strongly Fejer operator; Φ be a bounded strong attractant of Z ⊂ V that

is upper semicontinuous on some open set  ⊃ V; and the sequence {xs} be generated by

xs + 1 = F(xs + λsΦ(xs)), (5)

where x0 is an arbitrary initial state, λs  +0, and Σλs = ∞. Then, if {xs} is bounded, any of its limit points
belongs to Z. 

Proof. We use Conditions 1–5 with the Lyapunov function W(x) = .

First, we verify Condition 2. Let x' ∉ Z be a limit point of {xs}. By Theorem 1, at least x' ∈ V. By Defi-
nition 4, there exists a neighborhood U of zero such that g(z – x) ≥ δ > 0 for all z ∈ Z and x ∈ x' + 4U. Since
Φ(·) is upper semicontinuous, we may also assume that ||g || ≤ C < ∞ for all g ∈ Φ(x) and x ∈ x' + 4U. If

{ }  x' as k  ∞, then  ∈ x' + U for sufficiently large k. If xs ∈  + U for all s > nk, then xs ∈
x' + 2U and xs + zs ∈ x' + 4U, since zs is small. Then, for v ∈ Z and  = xs + λsgs, where gs = Φ(xs), we
have

for sufficiently large s and some θ > 0. Therefore, ||  – z || ≤ ||xs – z || – γλs for some γ > 0. The local strong
Fejer property implies that

where γ' > 0. Calculating the infimums gives
W(xs + 1) ≤ W(xs) – γ'λs, (6)

and summing (6) over s yields W(xs)  –∞, which is not possible.
Therefore, there exists mk > nk such that, for some ε > 0 such that ||u || ≤ ε implies u ∈ U, we have

which proves Condition 2. Relation (6) holds for nk ≤ s < mk. Therefore, summing gives

The sum  is easily estimated from below:

which yields  ≥ ε/C and, hence,

Passage to the limit as k  ∞ produces

which proves Condition 3 with pk = mk. Since Conditions 4 and 5 obviously hold, this completes the proof
of the theorem.
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In Theorems 1 and 2, we used the global condition that {xs} is bounded, which is, at first glance, rather
restrictive and difficult to check. However, the basic algorithmic scheme (3) can easily be modified using

some retracts R : E   that, if V is bounded, return {xs} into a bounded set  such that  + U ⊂ V:

(7)

where ys is an arbitrary element from . For a locally strongly Fejer F, it is easy to show that the process

{xs} leaves  only a finite number of times and, hence, {xs} is bounded. Moreover,  is continuous on .
The other aspects of the theory of processes (7) are also covered by Theorem 2.

As in the case of Theorem 1, we have the following result.
Corollary 2. Let Fs be a locally strongly Fejer operator at xs chosen from a finite family � = {P1, …,

Pm} of continuous operators Pi such that Pi(v) = v (i = 1, 2, …, m) for all v ∈ V and, for any x ∉ V, there
exists Pi that is locally strongly Fejer at x; zs  0 as s  ∞; Φ be a bounded strong attractant of Z ⊂ V
that is upper semicontinuous on some open set  ⊃ V; and the sequence {xs} be generated by

xs + 1 = Fs(xs + λsΦ(xs)), (8)

where x0 is an arbitrary initial state, λs  +0, and Σλs = ∞. Then, if {xs} is bounded, any of its limit points
belongs to Z. 

This assertion follows from Corollary 2 and the uniform continuity of the finite family � of continuous
operators Pi, i = 1, 2, …, m.

3. APPLICATION: THE GRADIENT PROJECTION METHOD
WITH DECOMPOSITION OF THE CONSTRAINT SYSTEM

In practice, the above results can be applied as follows. On the one hand, the wide range of Fejer opera-
tors can be used to solve feasibility problems, which guarantee that the limit points of the constructed
sequence {xs} belong to the feasible set V. On the other hand, these results can be used to improve a feasible
point so as to make it closer to a set Z of distinguished points in V. Examples are points that solve an opti-
mization or other problem on V. In this case, many methods are available for determining, say, relaxation
directions in which the current feasible point approaches the solution set. The essence of Theorem 2 is that,
under its assumptions, schemes for finding feasible points and algorithms for achieving the distinguished
subset can be fairly easily combined.

In what follows, we consider the important special case where the feasible set V can be represented as
the intersection of the family of sets Vτ, τ ∈ T; i.e., V = . For finite T = {1, 2, …, N}, numerous
Fejer-type algorithms were proposed for searching for a feasible point v ∈ V, i.e., for solving the convex
feasibility problem (CFP). Many of these algorithms can be described by an operator of the form

(9)

where Πi is the projector onto the corresponding Vi, I is the identity operator, λi ∈ [0, 2] are relaxation
parameters, and (wi, i = 1, 2, …, N) = w ∈ ∆N are weights of the projections. Let ∆N denote the standard
N-dimensional simplex

These operators make it possible to use the structure of various Vi such that the projection operations
onto them are much easier than onto V. Since individual projections Πi can be calculated regardless of each
other, we can use parallel computations, etc.

A general convergence theory of Fejer-type processes based on such operators was presented in [6]. The
main result of that theory is that the limit points of the sequence {xs} generated by a recurrence of the form
xs + 1 = F(xs), s  ∞, belong to V for various suitably chosen λi and wi. In some special cases, it can be

Ṽ Ṽ Ṽ
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shown that xs  ΠV(x0) is the projection of the initial point x0 onto V. No methods are available for finer
tuning.

For simplicity, we consider the operator Fs given by (9), where, for every s, only one weighting coeffi-
cient wi is nonzero and all the relaxation coefficients λi are equal to unity. Let us show that, if xs ∉ Vi for
some i = is, then Fs =  is locally strongly Fejer at xs. This assertion can be formulated as the following
lemma.

Lemma 1. Let V be a convex closed bounded set and W be a convex closed superset of W (V ⊂ W). Then,
for x ∉ W, the projector ΠW(x) defined as

is a locally strongly Fejer operator with respect to V.

Proof. We fix x ∉ W and choose a sufficiently small neighborhood U of zero such that (x + 2U) ∩ W =  and
||ΠW(z)|| ≤ 2||ΠW(x)|| = C/2 for z ∈ x + 2U. Then, for z ∈ x + U and arbitrary v ∈ V,

where R ≥ ||v || for all v ∈ V. Therefore, ||ΠW(z) – v || ≤ γ||z – v || for all z ∈ x + U and γ < 1, as required.

Corollary 2 immediately implies that the operator Fs constructed by choosing at the point xs the operator
Fs =  with xs ∉  guarantees the convergence of the simple iteration xs + 1 = Fs(xs) as applied to the

CFP. Note that the method for choosing  is of no importance. Therefore, in terms of convergence theory,
nearly all the row-action methods [10], such as cyclic projection, farthest set projection, intermittent meth-
ods, maximum residual, etc., are covered by Corollary 2.

Moreover, Corollary 2 provides an additional advantage due to the attractant Φ(x). As an example, we
consider the convex mathematical programming problem

f∗ =  = f(x*), x* ∈ Z ⊂ V, (10)

where the convex closed bounded feasible set V is represented as the intersection of a family of convex
closed supersets Vi, i = 1, 2, …, N: V = . To direct iterative process (8) toward the solution set

of optimization problem (10), it is sufficient to use a special disturbance zs = –λsgs, where gs ∈ Φ(xs) = ∂f(xs)
is an arbitrary subgradient of the objective function in problem (10) that is chosen from the subdifferential
set ∂f(xs) and λs  +0.

Since 0 ≤  f(x) – f∗ ≤ g(x – z) for g ∈ ∂f(x) and x ∈ V ∩ Z, the mapping ∂f(·) is an upper semicontinuous
bounded attractant for Z.

Corollary 2 implies the convergence of various alternating gradient projections onto the decomposition
elements of V:

where Πs is the projector onto a set  such that xs ∉ ), gs ∈ ∂f(xs), f is a finite convex function, λs  +0, and

 = ∞.
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Using Lemma 1, we can show that the operator

(11)

where Πi is the projection onto Vi and w = (w1, …, wN) ∈ ∆N, is a locally strongly Fejer operator.

Lemma 2. Let the operator F given by (11) be such that  ≥ γ > 0. Then, F(x) is a locally strongly
Fejer operator at the point x. 

Proof. Let  ∉ V be a fixed point. Define I( ) = {i : ||Πi( ) – || > 0 }. By construction, each Πi (i ∈
I( )) is locally strongly Fejer at  with some constant αi ≤ α < 1. A neighborhood U of zero can be chosen
so that, for some δ > 0 and ε > 0 for all x ∈  + U, we have

where ε < γ(1 – α)δ/2.

Let v ∈ V and x ∈  + U. Then,

where  = 1 – γ(1 – α) < 1. That was to be proved.

Due to this result, for problem (10), we can substantiate the use of a parallel version of the gradient pro-
jection decomposition method with a Fejer operator of the form (11)

where the projections can be performed simultaneously. The conditions imposed on the weights  in

Lemma 2 are satisfied, for example, when all of them are uniformly bounded away from zero:  ≥ ε > 0.

Accordingly, for step multipliers λs, it is sufficient that λs  +0,  = ∞, which are traditional condi-
tions for nonsmooth gradient schemes, although they lead to rather slow convergence.
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