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Abstract

 

—A minimum-length vector is found for a simplex in a finite-dimensional Euclidean space.
The algorithm of successive projections onto affine subspaces containing suitable subsimplices of the
initial simplex is shown to have a globally higher-than-linear convergence rate. Results of numerical
experiments are presented.
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1. INTRODUCTION

The problem of determining the minimum-norm element in a given set is frequently encountered in the-
oretical foundations of many applied mathematics areas and in applications that are often characterized by
large dimensions and severe limitations on the CPU time required for problem solving. Motivated by these
requirements, several methods based on efficient projection algorithms have been created. An overview of
them can be found, for example, in [1].

Since the problem has a large dimension, we have to solve it by iterative methods. As a result, the impor-
tant problem of increasing the convergence rate of such algorithms arises. One of the basic approaches can
be described as follows. The set 

 

C

 

 on which a projection is constructed is represented as the intersection of
“simple” sets 

 

C

 

i

 

 (

 

i

 

 = 1, 2, …, 

 

N

 

), which are half-spaces, cubes, simple cones, etc., and iterative algorithms
involving easily computable projections onto 

 

C

 

i

 

 are constructed. At the same time, the internal description
of 

 

C

 

 as the convex hull of a family of simple sets naturally arises in some problems:

and the minimum-norm element in 

 

C

 

 can also be sought using algorithms based on individual projections
onto 

 

C

 

i

 

 and/or simple modifications of these sets (see, for example, [2]). This poses the problem of con-
structing an effective projection onto 

 

C

 

i

 

. As a step in the direction of its efficient solution, in [3], an algo-
rithm of projection onto 

 

C

 

i

 

 was proposed when the latter are simplices, i.e., the convex hulls of affinely inde-
pendent vectors of a finite-dimensional Euclidean space 

 

�

 

. The algorithm uses projections onto the affine
hulls of subsimplices of the initial simplex and, to avoid confusion with successive projection methods
[4, 5], we will refer to it as the affine subspace method (ASM).

In [3], the finite convergence of ASM was proved and promising numerical results were presented that
demonstrated the high performance of the method. However, no theoretical estimate of the convergence was
given.

The goal of this paper is to establish a global higher-than-linear convergence rate of this algorithm and
to demonstrate some promising numerical results.

2. BASIC CONCEPTS AND NOTATIONS

The problem of searching for a minimum-norm element is considered in a finite-dimensional Euclidean

space 

 

�

 

 with the conventional norm 

 

||

 

x

 

||

 

 = 

 

 associated with the scalar product 

 

xy

 

. Hereafter, it is assumed
that the dimension of 

 

�

 

 is 

 

n

 

.
Along with the convex hull mentioned above, we will also use the affine hull.
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Definition 1.

 

 For 
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, the set aff
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 defined as

is called the 

 

affine

 

 

 

hull

 

 of 

 

C

 

.
The affine hull aff{

 

C

 

} is the smallest affine subspace containing 

 

C

 

. A set of points
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, …, 
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 of 

 

�

 

 is
called affinely independent if

imply 

 

λ

 

i

 

 = 0

 

 for 

 

i

 

 = 1, 2, …, 

 

m

 

.
Let ri{

 

A

 

} denote the relative interior of 

 

A

 

, i.e., the interior with respect to aff{

 

A

 

}.
Every affine subspace 

 

A

 

 can be assigned a certain linear space 

 

L

 

A

 

, which is called the associated space.
In this case, it can be defined as

In 

 

�

 

, we consider the problem of finding the least distance from a given convex set 

 

X

 

 to the origin:

 

(1)

 

It is assumed that 

 

X

 

 is a simplex, i.e., a convex polyhedron specified by affinely independent vertices:
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Affine independence implies that 
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. The conditions for the optimality of 
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 in problem (1) have the
form of the simplest variational inequality

 

. (3)

 

In the case of simplex (2), they are reduced to the verification of 
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 inequalities: 
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The algorithm proposed below makes use of projections onto the affine hulls of subsimplices of 

 

X

 

; i.e.,
it uses solutions to problems of the form
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where 
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. An important role is played by the following easy-to-check property: if z* is
a solution to problem (4), then z*y = 0 for any y ∈ .

To describe the algorithm and analyze its convergence, we introduce the following useful concept.
Definition 2. The set SI = co{xi, i ∈ I} defined by an index set I ⊂ � is called a suitable subsimplex if

Obviously, for example, any singleton set I defines a suitable subsimplex.
The set of points {xi, i ∈ I}, together with I describing S = co{xi, i ∈ I}, is referred to as a basis. The basis

of a suitable subsimplex is called a suitable basis. The number of vectors in I is denoted by |I|.
The affine hull of a suitable subsimplex is called a suitable affine subspace.

3. THE AFFINE SUBSPACE METHOD

The algorithm consists of iterations, each of which begins when there is a suitable subsimplex of the ini-
tial simplex (a basis, used as input data) and is completed when a new suitable subsimplex (new basis) is
constructed whose distance to the origin is strictly smaller than that in the preceding subsimplex.

By using a structural programming pseudolanguage, the method can be described as follows:
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Initialization. Let I0 be an initial basis generating a suitable subsimplex   S0 and an affine subspace
H0:

The iteration index is set equal to zero: k = 0.

Basic Iteration

Step 1. Projection onto Hk. Solve the problem

(5)

Step 2. Verification of optimality. By virtue of (3), if xizk ≥ ||zk||2 for all i ∈ �\Ik, then zk is a solution to
problem (1), since xizk ≥ ||zk||2 for i ∈ Ik by construction. The algorithm halts.

Step 3. Initialization of inner iteration for constructing a new basis (executed if the optimality con-
ditions for zk are not satisfied). Choose an arbitrary ik ∈ �\Ik such that

(6)

Set the inner iteration index equal to zero: s = 0. Set Js = Ik ∪ {ik} and ws = zk.
Step 4. Inner iteration.
(a) Projection onto a modified basis. Form a new subsimplex Ts = co{xi, i ∈ Js} and a new affine subspace

Gs = aff{Ts} and solve the auxiliary projection problem

(7)

(b) Feasibility verification. If ys ∈ Ts (i.e., Ts is a suitable subsimplex), then set Ik + 1 = Js and Hk + 1 = Gs

and exit the inner iteration.
(c) Basis correction (executed if ys ∉ Ts). Set

(8)

and find a maximum number µ such that u(µ) ∈ Ts; i.e.,

(9)

By construction, the point u(µ) with µ = µs belongs to the relative interior of a minimal edge of Ts, which in
turn defines the set of its extreme points xi, i ∈ Js + 1; i.e.,

(10)

where Js + 1 ⊂ � and  = 1, θi > 0 for i ∈ Js + 1. Increase the inner iteration index by one (s ⇒ s +

1) and return to the beginning of the inner iteration.
Remark. Since | |Js + 1| < |Js|, the inner iteration is executed a finite number of times and necessarily pro-

duces a suitable subsimplex, in the extreme case, a singleton.
Step 5. End of the inner iteration. Increase the outer iteration index by one (k ⇒ k + 1) and return to the

beginning of the outer iteration.
End of the basic iteration.
End of the algorithm.
It can be seen from the description that an iteration step of the algorithm begins with a suitable basis Ik

generating the corresponding suitable affine subspace Hk = aff{xi, i ∈ Ik} and a suitable subsimplex Sk =
co{xi, i ∈ Ik} and is completed after a new suitable basis Ik + 1 with the corresponding affine subspace Hk + 1 =
aff{xi, i ∈ Ik + 1} and with a suitable subsimplex Sk + 1 = co{xi, i ∈ Ik + 1} is constructed.
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It will be shown later that ASM (i) converges in a finite number of iterations and (ii) has a globally linear
convergence rate. Rigorous statements of these results are given below.

4. CONVERGENCE OF THE AFFINE SUBSPACE METHOD

The following theorem states the convergence of ASM and provides an estimate for its convergence rate.

Theorem 1. There is  such that

and there is ρ ∈ [0, 1) satisfying

for k = 1, 2, …, .

Proof. First, we show that the inner iterations, at least, do not increase ||ws||. Indeed, in (8), we have ys,
ws ∈ Hs, and ||ys|| ≤ ||ws|| and, since the norm is convex,

Setting µ = µs yields u(µs) = ws + 1; therefore, ||ws + 1|| ≤ ||ws||.
Consequently, if the inner iteration is exited, for example, at the th step, then

(11)

which guarantees that the sequence ||zk|| (k = 0, 1, …, ) at least does not increase.

To prove that it strictly decreases, it suffices, in view of (11), to show that the strict inequality ||ws + 1|| <
||ws|| holds for at least one 0 ≤ s <  at the inner iteration. In particular, we show that it holds for s = 0. Then
w0 = zk ∈ ri{T0}. Let

in the representation

Suppose that y0 solves problem (7) at s = 0. Then, the following is true:
(A) y0 is either representable as

(B) or as

where  (otherwise L0) is the linear subspace associated with G0.

We show that θ > 0 in case (A). Indeed, let
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Multiplying this equality by w0 – y0 gives
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Note that

since y0 is orthogonal to L0 , which follows from the optimality of y0 as a solution to problem (7). Further-
more,

according to the choice of  in (6). In turn,

(13)

since both  – w0 and w0 – y0 belong to L0 and, hence, are orthogonal to y0 .

Furthermore,

(14)

since w0(h0 – w0) = 0 by virtue of the optimality of w0 on Hk and y0(h0 – y0) = 0 by virtue of the optimality
of y0 on G0 , as mentioned above.

Then, if θ < 0, Eq. (12), combined with (13) and (14), yields

which is a contradiction.

The equality θ = 0 is ruled out by choosing . Indeed, if this is not the case, then y0 = h0 for some h0 ∈
Hk and

Direct calculation shows that

in view of (6). Moreover, (1 – λ∗)w0 + λ∗  ≠ w0 and the strict convexity of the norm implies that

which again leads to a contradiction.

Note that θ > 0 implies ||y0|| < ||w0||. According to (8)–(10), let
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with λi ≥ δ > 0, | | < ∆ (i ∈ Ik), and θ > 0, we conclude that µ0 satisfies the estimate

where ∆ is an easy-to-estimate constant. Then

(15)

as required.

Case (B) (i.e., y0 =  + g, where g ∈ L0) is much easier. By construction, we have [ , w0] ⊂ T0 and,

since w0 ∈ ri{Sk} ⊂ Hk, there exists γ > 0 such that w0 + γg ∈ Sk ⊂ T0. Therefore, [ , w0 + γg] ⊂ T0 .

Then, picking  = γ/(1 + γ), we obtain

and, hence,

which, as earlier, implies (15). If ||zk + 1|| < ||zk|| (which follows from (11) and (15)), we conclude that the
algorithm is finite because the number of suitable subsimplices of X is finite and none of them can be used
twice. Moreover, the algorithm cannot stop at a nonoptimal point since the generated sequence is strictly
monotone if optimality conditions (3) are violated.

To prove that the method converges exponentially, we show that ||y0||2 ≤ (1 – γ 2)||zk||2 for some γ2 ∈ (0, 1].
This follows from the estimates

where

Therefore,

Now, we can estimate

(16)

It follows that

(17)

as required.
Note that, by virtue of strict inequality (17), the resulting convergence rate estimate is a better-than-linear

convergence rate for ||zk|| – ||z*||, which is also confirmed by the numerical experiments described below.
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5. NUMERICAL EXPERIMENTS

In the numerical experiments with the algorithm, the initial simplex was generated at random to be a set
of vectors with components that are independent uniformly distributed random variables. To generate stress
tests, we used scaling so the last coordinate of each vector had a much smaller range of variation than the
remaining coordinates. More precisely, in each test, the initial data set was a family of n – 1 n-dimensional
vectors of the form x = (ξ1, …, ξn) with their components ξi calculated as

where σ is the scaling parameter, δ is the shift parameter along the nth coordinate axis, and ζi (i = 1, 2, …, n)
are independent random variables uniformly distributed over [0, 1].

Despite the simplicity of the test, the minimum-norm element seems rather difficult to find. At least, the
simple algorithm of [6], when used on the problem with a relatively moderate dimension of 100 variables
and 100 simplex vertices, could satisfy the optimality conditions only to 10–2 accuracy after more than one
million iterations.

The algorithm described in this paper has been implemented in the language Octave [7], which is a freely
distributed matrix-vector software that is fairly convenient for such experiments: it took about 150 lines to

ξi

σ ζi 0.5–( ), i 1 2 … n 1,–, , ,=
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⎨
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Fig. 1. Curves for (1) σ2 = 10, (2) σ2 = 1000, and (3) σ2 = 10 000; the shift parameter is δ = 0.001.

Fig. 2. Notes: (+) for r1, (×) for r2.
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code the algorithm. More details on the source code can be found in [8], which provides a detailed descrip-
tion of the algorithm’s current version by using the literate programming technique.

Nevertheless, the program only was used to check the reliability and numerical efficiency of the algo-
rithm in terms of the number of iterations required for deriving a solution. No special attempts were made
to enhance its efficiency at this stage. For example, the most computationally intensive task—the projection
onto the affine subspaces Gs in (7)—was performed by directly solving the system of necessary and (in this
case also sufficient) optimality conditions

The system was solved for u (which are the expansion coefficients in the projection of zero onto Gs in terms
of the basis of this subspace) and for θ (which is dual to the normalization conditions for these coefficients).
Here, e = (1, …, 1) and Ps is the Gram matrix of the basis vectors of Gs. The solution of the optimality con-
ditions is reduced primarily to the inversion of Ps, which, in the simplest case, was run from a cold start. Of
course, this is a major reserve for improving the efficiency of the algorithm. Specifically, preliminary exper-
iments have shown that the computational (time) complexity of the algorithm can be reduced from O(n3.5),
as obtained in [3], to O(n2). However, this point requires further investigations because the effect of error
accumulation arises in this case.

A typical behavior of the algorithm can be demonstrated by minimizing the distance to a simplex with
1999 vertices in a 2000-dimensional space, which is a fairly representative example. Figure 1 shows (on a
logarithmic scale in the Oy axis) the convergence of ||zk|| – ||z*|| to zero for various values of the scaling factor
σ. It can well be seen that the convergence rate is exponential at most of the iterations and acceleration
occurs at the beginning and end of the run. Moreover, the parameters of the exponential convergence rate
exhibit remarkable stability with respect to scaling: the convergence rate remains nearly the same as σ2 var-
ies by three orders of magnitude.

Figure 2 presents a more detailed exposition of the results concerning the linear convergence parameters.
The data set r1 describes the variation in the norm of zk, which, according to (16), must decrease no more
slowly than a geometric progression with the ratio ρ. Figure 2 (the data set r1) shows the values of
||zk + 1||/||zk|| for the basic set of iterations k. The data set r2 represents the values of (||zk + 1|| – ||z*||)/(||zk|| –
||z*||) for the same data. The acceleration of convergence in terms of the deviation from the optimal value
can well be seen at the final stage of the computations. For such a dimension, a linear convergence parameter
of about 0.95 is fairly reasonable or, at least, comparable with the analogous theoretical estimates obtained
for ellipsoid methods and projection algorithms. A detailed analysis of the dependence of this factor on the
dimension and parameters of the problem is still to be performed in the future.
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