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Big Data vs Big Computing

Figure 1. Next-gen sequence data size compared to SPECint.
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Source: Comm. ACM, vol. 57(7), 2014.
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Optimization dream: to solve oo X oo problem

Successive approximations:
@ Megabyte-optimization: 10° — 108 variables/constraints;
@ Gigabyte-optimization: 10° — 10! variables/constraints;
@ Terabyte-optimization: 102 — 10%* variables/constraints;

@ etc ...
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Simple algorithms 1

Coordinate descent:

@ Y. Nesterov, Efficiency of coordinate descent methods on huge-scale
optimization problems, SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341-362, 2012.

@ Z. Qin, K. Scheinberg, and D. Goldfarb, Efficient block-coordinate
descent algorithms for the group lasso, Mathematical Programming
Computation, vol. 5, pp. 143-169, June 2013.

@ |. Necoara and D. Clipici, Efficient parallel coordinate descent
algorithm for convex optimization problems with separable

constraints:application to distributed MPC, Journal of Process
Control, vol. 23, no. 3, pp. 243-253, March 2013

@ etc ...
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Simple algorithms 2

Gradient-type algorithms:

@ Y. Nesterov, Gradient methods for minimizing composite functions,
Mathematical Programming, vol. 140, pp. 125-161, 2013.

@ M.A.T. Figueiredo, R.D. Nowak, S.J. Wright Gradient Projection for
Sparse Reconstruction: Application to Compressed Sensing and Other
Inverse Problems IEEE J. Sel. Topics in Signal Processing

@ etc ...
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Simple algorithms 3

Projection methods.

@ Bauschke H., Borwein J. Projection Methods, SIAM J. Optimization,
1996

@ D. Henrion and J. Malick. Projection methods for conic feasibility
problems; application to sum-of-squares decompositions Optimization
Methods and Software, 26(1):23-46, 2011.

@ D. Henrion, J. Malick Projection methods in conic optimization
Optimization Online.

@ J. Nie Regularization methods for sum of squares relaxations in large
scale polynomial optimization. Technical report, ArXiv, 20009.

@ And many others ...
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Projection methods. Notation
Our main tool:

Mx : E — X — the orthogonal projection operator

Mx(x) = argminmin ||x — ).
x(x) = argmin min Ix — z||
modified to such.

Basic property: non-expansive and commonly contractive or can be easily
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Connections to optimization
Convex optimization problem:

f(x*) = minf(x)
xe X
Equivalent formulations:

@ Variational optimality condition

gx—x*) =0
Vx € X, g € Of(x*)

@ Fixed point problem for the projection operator:
x* = ®x \(x"),

where ®x \(x) = MNx(x — Ag), g € 0f(x), MNx(-) is the orthogonal
projection operator, A > 0 step multiplier.
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Projection methods

Algorithmika

[teration method:

X = ox ,\(x¥), k=0,1,...

or
XKL= Ny (xk = \gh), gk e af(x¥), k=0,1,...
Properties:
+ Theoretically sound: based on contraction property of Mx(+));
+ Suitable for Big O with respect to memory requirements;
+ Provides decomposition/parallelization opportunities.
- Slow (linear) convergence;

- Nontrivial sub-problem to solve.
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Projection methods

Reduction to projection

Seems to be a folklore 1

min cx = min cx — MNx(x® — 0c¢)
Ax < b xeX

for arbitrary x° and large enough 6 > 0.
As

Mx(x® = 6c) = Nx_015c(0) = Nx(0)
it amounts to the least norm problem for the set X
X ={x:Ax < b}

where b= b — A(x® — 0c).

'But true for polyhedral sets only ...
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Least norm problem

Least Norm Problem

Basic steps:

@ Step 1. Change to uniform constraints
@ Step 2. Use exact penalty function
@ Step 3. Dualize

@ Step 4. Project onto polyhedral cone

[m] = -
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Step 1. Change to uniform constraints

We convert to cone constraints by adding extra (n + 1-th) variable:

X={x:Ax<b} - X={x:Ax<0},xe" =1
x,§) € EMt1
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Least norm problem

Step 2. Use exact penalty function

We use nondifferentiable exact penalty function to get rid of the all but one
constraint:

. 1 _ . 1._ -_
min - JIRIP= min {S]RI7 +]ARIL)
xeX xemtl =1
xe"tl =1

for v > 0 large enough, | - |1, = max{0, -}.
Notice that

|AR|L = max (M0 + 37, NA)X = max  zx = (A),
A S Am+1 zc A

— the support function of the set A = co{0,A;,i =1,2,..., m}.
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Least norm problem

Step 3. Dualization

Finally the problem is dualized with respect to the single non-uniform
constraint:

. 1. _
min {5 IRI7 +7 (A)s} =
)_(e"+ =1
maxy mins {3 %12 + 7 () + (%" — 1)} = max, {6 (u) — u}
where ,
¢ (u) = min;({§||>‘<||2 +7 (A), + uxemt1} =
min (S RI7 + (34 — ue™).

As it happened the function ¢, (u) becomes trivial for large ~.
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Least norm problem

Smth from Convex Analysis

Not too well-known but useful formula from convex analysis

1
I"IAXSb(O) = min 5

.1
x| = - mum{§IIUII2 + (Ax < b),}
Ax < b

where (Z), = sup,cz uz — the support function of the set Z.

Easy to derive from Z = co{2!,22,..., 2N} for polyhedral Z and for a
general convex set in the finite dimensional case thanks to Karatheodori
theorem.
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Least norm problem

Step 4. Projection on the polyhedral cone
The final result of the transformations above was to hide all complexities
into 1

¢ (u) = mii"{§||>'<|!2 + (v A - ue™ )}

but from the previous slide

. 1.
¢ (u) = min SIxIP =
x €y A — uet!

1
min 5”)’( — ue" 2 =T, 7(ue"t1)
xe~nA

and this is very simple problem for large .
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Least norm problem

Formal proof

o Let K4 = Uy>0AA, of course convex cone.
@ Then dist(ue™?, K4) = ¢(u) = ¢(1)u? < ¢, (u) due to linearity and
A C Ky.

o Let u, solves min,{¢(u) — u}. Actually u, = 1/2¢(1). Then
d(uy) = ||z* — ue™ 1|2 with z* € K4 and therefore z* € A\ A for all
A greater then certain \,.

o It leads to ¢y (ux) < ¢(uy) for such A > A, and hence ¢ (ux) = d(uy).
o Finally from ¢, (u) — u > ¢(u) — u for all u and

Oy () — e = P(us) — 1 < Pu) —u < Py (u) —u

follows that wu, in fact minimizes ¢ (u) — u.
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Computational issues

Projection on the polyhedral cone

The key computational problem:

¢(1)= min |z =" = Nyeq(e™™),
ze K(A)

where K(A) = Co{A;,i =1,2,...,m}.

Closed form solution z* = A/(AA’)~1Ae"*! is unrealistic however for Big O
as well as the chain rule

v=Ae"" - (AW =v = 2" = Aw
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Computational issues

Decomposition

We can use the property of the conical hull
K(A) = Co{A;,i =1,2,...,m} = Co{Co{ A}, k=1,2,..., K},
where A, = {A;,i € I} and index sets I, cover the whole range of rows

1,2,...,m.

In turn I'IK(A)(e”H) can be reduced to separate (and parallel) projections
I'IK(Ak)(e”H) (with slight modifications).
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Computational issues

Sketch of Decomposition-Coordination

General idea: iterate between two steps Coordination (C) and
Decomposition (D):

C: Get proposals z¥, k = 1,2,..., K from each of sub-problems
and solve the coordination problem

|z — "2 = min||z — e"Y)?, z € Co{zF k=1,2,... K}

D: For each of sub-problems modify the feasible cone
Ky = Co{z, K(Ay)} and solve for k =1,2,..., K
sub-problems

|25 — e Y2 = min ||z — " Y%,z € Ky}

to get new proposals z¥, k = 1,2,..., K.
To initialize the process one can use of course an arbitrary z¥ € K(Ay) or
to think of smth not that stupid.
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Computational issues

Historical remarks

This idea can be traced back at least as far as Demyanov V.F., Malozemov
V.N. Introduction to Minmax, M.: Nauka, where it was used in its simplest
form.

In its current form in was proposed by Nurminski E. (I1zVuz, somewhere in
'90).

Some improvements due to Nurminski E, Dolgy D. in Korean Univ
publication, 2012.

Probably there are many similar proposals, pls let me know.
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Computational issues

Caveats

@ A, should not be too big or ill-structured to complicate solutions of
sub-problems.

@ Ay should not be too small to make the coordination problem too big
or complicated.
Definition Vectors a and b from E" are called structurally orthogonal (
or independent) if a;b; = 0 for all i = 1,2,...,n. 2
Definition An m x n matrix A is called structurally orthogonal if its rows
A, i=1,2,..., m are structurally orthogonal.

For such matrices the projection problem has linear complexity as AA is a
diagonal matrix.

20f course it is more restrictive than orthogonality (implies it) and less restrictive
than complementarity (no sign constraints). Somewhere in between.
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Computational issues

Structurally Orthogonal Decomposition

Select I such that the corresponding Ay are structurally (s-) orthogonal.
Define graph Ga = (Va, Ea), where
@ V4 — the set of rows of A,

@ Ejx — the set of edges e = (v1,v2) € Va X Va such that vy is NOT
s-orthogonal to .

The set of mutually s-orthogonal rows is a set of independent nodes in
graph G.

Problem: Decompose the graph into minimal number of independent
components (coloring).

Specifics: Graphs are huge, but sparse. Solutions with relatively small (up
to 10*) uncolored reminders are acceptable.
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Computational issues

Heuristics

Greedy:

@ try to build from the current graph an independent set as big as
possible;

@ delete this set from the graph (with incidents edges of course);
@ continue with the rest of the graph.

Allows for many variants.
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Computational issues

LP-specifics

Simplest cases:
@ Sign constraints: x > 0 — all constraints are s-orthogonal;

@ Two-sided constrains: | < x < u — 2 s-orth sets, 2" variants, any
combination of lower-upper constraints;

@ Transportation problem: 2 s-orth sets, supply balances and demand
balances or any combination;

@ Canonical m x n, m << n LP:

min cx
Ax=b;x>0

1 s-ort set (sign constraints), general equality constraints as
"reminder”.
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Computational issues

SHELL 0 (www.netlib.org) 537 cnst, 1775 vars, 4900 nz
(0.5%)

Graph stat: 537 nodes, 2210 arcs.
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Computational issues

SHELL 1 (www.netlib.org) |IS| = 278

Graph stat: 257 nodes, 781 arcs
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Computational issues

SHELL 2 (www.netlib.org) |IS| = 159

Graph stat: 96 nodes, 254 arcs
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Graph stat: 28 nodes, 65 arcs
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Computational issues

SHELL (www.netlib.org) Summary of the selection process

Desc Nodes Arcs Av.degree Indp. set

SHELL 0 537 2210 4.1155 278
SHELL 1 257 781 3.0389 159
SHELL 2 96 254 2.6458 68

SHELL 3 28 65 2.3214

[m] = = =
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Projection methods Least norm problem Computational issues Numerical experience

——
GREENBEA, www.netlib.org 2374x5323x30230 (0.24%)
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Computational issues

GREENBEA/20 — the giant core (1105 constraints)
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Projection methods Least norm problem Computational issues Numerical experience

——
GREENBEA 1 1313 cnst, |IS| = 1075 , 18148 ars
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Projection methods Least norm problem




Projection methods Least norm problem Computational issues Numerical experience

GREENBEA 3 685 cnst, |/S| = 181, 7415 arcs
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Projection methods Least norm problem Computational issues Numerical experience

GREENBEA_4 549 cnst, |/S| = 136 , 5490 arcs
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Computational issues

GREENBEA 5 450 cnst, | /S| = 99 , 4310 arcs
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Projection methods Least norm problem Computational issues Numerical experience

GREENBEA 6 350 cnst, |IS| =99 , 3135 arcs
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Computational issues

GREENBEA 7 264 cnst, | /S| = 81 , 2470 arcs
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Projection methods Least norm problem Computational issues Numerical exp

GREENBEA_8 191 cnst, |/S| = 67 , 1960 arcs
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Projection methods Least norm problem Computational issues Numerical exp

GREENBEA 9 149 cnst, |/S| = 40 , 1601 arcs
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Computational issues

Desc Nodes Arcs Av.degree Indp. set
GREENBEA 1 2388 34294 6.9633 1075
GREENBEA 2 1313 18148 7.2350 447
GREENBEA 3 866 9938 8.7140 181
GREENBEA 4 685 7415 9.2380 136
GREENBEA 5 549 5490 10.0000 99
GREENBEA 6 450 4310 10.4408 99
GREENBEA 7 350 3135 11.1643 81
GREENBEA 7 264 2470 10.6883 67
GREENBEA 9 191 1960 9.7449 40
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Convergence of the projection procedure
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Numerical expe

Almost Gigabyte-Optimization
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