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Big Data vs Big Computing

Source: Comm. ACM, vol. 57(7), 2014.
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Optimization dream: to solve ∞×∞ problem

Successive approximations:

Megabyte-optimization: 106 − 108 variables/constraints;

Gigabyte-optimization: 109 − 1011 variables/constraints;

Terabyte-optimization: 1012 − 1014 variables/constraints;

etc ...
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Simple algorithms 1

Coordinate descent:

Y. Nesterov, Efficiency of coordinate descent methods on huge-scale
optimization problems, SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341-362, 2012.

Z. Qin, K. Scheinberg, and D. Goldfarb, Efficient block-coordinate
descent algorithms for the group lasso, Mathematical Programming
Computation, vol. 5, pp. 143-169, June 2013.

I. Necoara and D. Clipici, Efficient parallel coordinate descent
algorithm for convex optimization problems with separable
constraints:application to distributed MPC, Journal of Process
Control, vol. 23, no. 3, pp. 243-253, March 2013

etc ...
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Simple algorithms 2

Gradient-type algorithms:

Y. Nesterov, Gradient methods for minimizing composite functions,
Mathematical Programming, vol. 140, pp. 125-161, 2013.

M.A.T. Figueiredo, R.D. Nowak, S.J. Wright Gradient Projection for
Sparse Reconstruction: Application to Compressed Sensing and Other
Inverse Problems IEEE J. Sel.Topics in Signal Processing

etc . . .
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Simple algorithms 3

Projection methods.

Bauschke H., Borwein J. Projection Methods, SIAM J. Optimization,
1996

D. Henrion and J. Malick. Projection methods for conic feasibility
problems; application to sum-of-squares decompositions Optimization
Methods and Software, 26(1):23-46, 2011.

D. Henrion, J. Malick Projection methods in conic optimization
Optimization Online.

J. Nie Regularization methods for sum of squares relaxations in large
scale polynomial optimization. Technical report, ArXiv, 2009.

And many others ...
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Projection methods. Notation

Our main tool:
ΠX : E → X — the orthogonal projection operator.

ΠX (x) = argminmin
z∈X

‖x − z‖2.

Basic property: non-expansive and commonly contractive or can be easily
modified to such.
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Connections to optimization

Convex optimization problem:

f (x⋆) = min f (x)
x ∈ X

Equivalent formulations:

Variational optimality condition

g(x − x⋆) ≥ 0
∀x ∈ X , g ∈ ∂f (x⋆)

Fixed point problem for the projection operator:

x⋆ = ΦX ,λ(x
⋆),

where ΦX ,λ(x) = ΠX (x − λg), g ∈ ∂f (x), ΠX (·) is the orthogonal
projection operator, λ > 0 step multiplier.
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Algorithmika

Iteration method:

xk+1 = ΦX ,λ(x
k), k = 0, 1, . . .

or
xk+1 = ΠX (x

k − λgk), gk ∈ ∂f (xk), k = 0, 1, . . .

Properties:

+ Theoretically sound: based on contraction property of ΠX (·));

+ Suitable for Big O with respect to memory requirements;

+ Provides decomposition/parallelization opportunities.

- Slow (linear) convergence;

- Nontrivial sub-problem to solve.
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Reduction to projection

Seems to be a folklore 1

min cx

Ax ≤ b

= min cx

x ∈ X

→ ΠX (x
0 − θc)

for arbitrary x0 and large enough θ > 0.
As

ΠX (x
0 − θc) = ΠX−x0+θc(0) = Π

X̄
(0)

it amounts to the least norm problem for the set X̄

X̄ = {x : Ax ≤ b̄}

where b̄ = b − A(x0 − θc).

1But true for polyhedral sets only . . .
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Least Norm Problem

Basic steps:

Step 1. Change to uniform constraints

Step 2. Use exact penalty function

Step 3. Dualize

Step 4. Project onto polyhedral cone
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Step 1. Change to uniform constraints

We convert to cone constraints by adding extra (n + 1-th) variable:

X = {x : Ax ≤ b} → X̄ = {x̄ : Āx̄ ≤ 0}, x̄en+1 = 1

where

x̄ = (x , ξ) ∈ En+1

Ā = ‖A − b‖
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Step 2. Use exact penalty function

We use nondifferentiable exact penalty function to get rid of the all but one
constraint:

min
x̄ ∈ X̄

x̄en+1 = 1

1

2
‖x̄‖2 = min

x̄en+1 = 1
{
1

2
‖x̄‖2 + γ|Āx̄ |+∞}

for γ > 0 large enough, | · |+∞ = max{0, ·}.

Notice that

|Āx̄ |+∞ = max
λ ∈ ∆m+1

(λ00 +
∑

m

i=1 λi Āi )x̄ = max
z ∈ Ā

zx̄ =
(

Ā
)

x̄

— the support function of the set Ā = co{0, Āi , i = 1, 2, . . . ,m}.
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Step 3. Dualization

Finally the problem is dualized with respect to the single non-uniform
constraint:

min
x̄en+1 = 1

{
1

2
‖x̄‖2 + γ

(

Ā
)

x̄
} =

maxu minx̄{
1

2
‖x̄‖2 + γ

(

Ā
)

x̄
+ u(x̄en+1 − 1)} = maxu{φγ(u)− u}

where

φγ(u) = minx̄{
1

2
‖x̄‖2 + γ

(

Ā
)

x̄
+ ux̄en+1} =

minx̄{
1

2
‖x̄‖2 +

(

γĀ − uen+1
)

x̄

As it happened the function φγ(u) becomes trivial for large γ.
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Smth from Convex Analysis

Not too well-known but useful formula from convex analysis

ΠAx≤b(0) = min
Ax ≤ b

1

2
‖x‖2 = −min

u
{
1

2
‖u‖2 + (Ax ≤ b)

u
}

where (Z )
u
= supz∈Z uz — the support function of the set Z .

Easy to derive from Z = co{ẑ1, ẑ2, . . . , ẑN} for polyhedral Z and for a
general convex set in the finite dimensional case thanks to Karatheodori
theorem.
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Step 4. Projection on the polyhedral cone

The final result of the transformations above was to hide all complexities
into

φγ(u) = min
x̄
{
1

2
‖x̄‖2 +

(

γĀ − uen+1
)

x̄
}

but from the previous slide

φγ(u) = min
x̄ ∈ γĀ − uen+1

1

2
‖x̄‖2 =

min
x̄ ∈ γĀ

1

2
‖x̄ − uen+1‖2 = ΠγĀ(ue

n+1)

and this is very simple problem for large γ.
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Small γ

0 en+1

A1

A2

u⋆

γA

The value of the function φγ(u) depends on γ for a given u⋆ for (small)
changes in γ.
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Big γ

0

A1

A2

u⋆

γA

en+1

The value of the function φγ(u) does not depend on further increase of γ
for a given u⋆.
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Formal proof

Let KA = ∪λ≥0λA, of course convex cone.

Then dist(uen+1,KA) = φ(u) = φ(1)u2 ≤ φγ(u) due to linearity and
λA ⊂ KA.

Let u⋆ solves minu{φ(u)− u}. Actually u⋆ = 1/2φ(1). Then
φ(u⋆) = ‖z⋆ − u⋆e

n+1‖2 with z⋆ ∈ KA and therefore z⋆ ∈ λA for all
λ greater then certain λ⋆.

It leads to φλ(u⋆) ≤ φ(u⋆) for such λ ≥ λ⋆ and hence φλ(u⋆) = φ(u⋆).

Finally from φγ(u)− u ≥ φ(u)− u for all u and

φγ(u⋆)− u⋆ = φ(u⋆)− u⋆ ≤ φ(u)− u ≤ φγ(u)− u

follows that u⋆ in fact minimizes φλ(u)− u.

Nurminski FEFU



Projection methods Least norm problem Computational issues Numerical experience

Projection on the polyhedral cone

The key computational problem:

φ(1) = min
z ∈ K (A)

‖z − en+1‖2 = ΠK(A)(e
n+1),

where K (A) = Co{Āi , i = 1, 2, . . . ,m}.

Closed form solution z⋆ = Ā′(ĀĀ′)−1Āen+1 is unrealistic however for Big O
as well as the chain rule

v = Āen+1 → (ĀĀ′)w = v → z⋆ = Ā′w
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Decomposition

We can use the property of the conical hull

K (A) = Co{Āi , i = 1, 2, . . . ,m} = Co{Co{Āk}, k = 1, 2, . . . ,K},

where Āk = {Āi , i ∈ Ik} and index sets Ik cover the whole range of rows
1, 2, . . . ,m.

In turn Π
K(Ā)(e

n+1) can be reduced to separate (and parallel) projections

Π
K(Āk )

(en+1) (with slight modifications).

Nurminski FEFU



Projection methods Least norm problem Computational issues Numerical experience

Sketch of Decomposition-Coordination

General idea: iterate between two steps Coordination (C) and
Decomposition (D):

C: Get proposals z̄k , k = 1, 2, . . . ,K from each of sub-problems
and solve the coordination problem

‖z̄ − en+1‖2 = min ‖z − en+1‖2, z ∈ Co{zk , k = 1, 2, . . . ,K}

D: For each of sub-problems modify the feasible cone
K̃k = Co{z̄ ,K (Āk)} and solve for k = 1, 2, . . . ,K
sub-problems

‖z̄k − en+1‖2 = min ‖z − en+1‖2, z ∈ K̃k}

to get new proposals z̄k , k = 1, 2, . . . ,K .

To initialize the process one can use of course an arbitrary z̄k ∈ K (Āk) or
to think of smth not that stupid.
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Historical remarks

This idea can be traced back at least as far as Demyanov V.F., Malozemov
V.N. Introduction to Minmax, M.: Nauka, where it was used in its simplest
form.
In its current form in was proposed by Nurminski E. (IzVuz, somewhere in
’90).
Some improvements due to Nurminski E, Dolgy D. in Korean Univ
publication, 2012.
Probably there are many similar proposals, pls let me know.
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Caveats

Ak should not be too big or ill-structured to complicate solutions of
sub-problems.

Ak should not be too small to make the coordination problem too big
or complicated.

Definition Vectors a and b from En are called structurally orthogonal (
or independent) if aibi = 0 for all i = 1, 2, . . . , n. 2

Definition An m× n matrix A is called structurally orthogonal if its rows
Ai , i = 1, 2, . . . ,m are structurally orthogonal.

For such matrices the projection problem has linear complexity as AA′ is a
diagonal matrix.

2Of course it is more restrictive than orthogonality (implies it) and less restrictive
than complementarity (no sign constraints). Somewhere in between.
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Structurally Orthogonal Decomposition

Select Ik such that the corresponding Āk are structurally (s-) orthogonal.

Define graph GA = (VA,EA), where

VA — the set of rows of A,

EA — the set of edges e = (v1, v2) ∈ VA × VA such that v1 is NOT

s-orthogonal to v2.

The set of mutually s-orthogonal rows is a set of independent nodes in
graph G .

Problem: Decompose the graph into minimal number of independent
components (coloring).

Specifics: Graphs are huge, but sparse. Solutions with relatively small (up
to 104) uncolored reminders are acceptable.

Nurminski FEFU



Projection methods Least norm problem Computational issues Numerical experience

Heuristics

Greedy:

try to build from the current graph an independent set as big as
possible;

delete this set from the graph (with incidents edges of course);

continue with the rest of the graph.

Allows for many variants.
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LP-specifics

Simplest cases:

Sign constraints: x ≥ 0 — all constraints are s-orthogonal;

Two-sided constrains: l ≤ x ≤ u — 2 s-orth sets, 2n variants, any
combination of lower-upper constraints;

Transportation problem: 2 s-orth sets, supply balances and demand
balances or any combination;

Canonical m × n, m << n LP:

min cx

Ax = b; x ≥ 0

1 s-ort set (sign constraints), general equality constraints as
”reminder”.
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SHELL_0 (www.netlib.org) 537 cnst, 1775 vars, 4900 nz

(0.5%)

Graph stat: 537 nodes, 2210 arcs.
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SHELL_1 (www.netlib.org) |IS| = 278

Graph stat: 257 nodes, 781 arcs
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SHELL_2 (www.netlib.org) |IS| = 159

Graph stat: 96 nodes, 254 arcs

Nurminski FEFU



Projection methods Least norm problem Computational issues Numerical experience

SHELL_3 (www.netlib.org) |IS| = 68

Graph stat: 28 nodes, 65 arcs
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SHELL (www.netlib.org) Summary of the selection process

Desc Nodes Arcs Av.degree Indp. set

SHELL_0 537 2210 4.1155 278
SHELL_1 257 781 3.0389 159
SHELL_2 96 254 2.6458 68
SHELL_3 28 65 2.3214
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GREENBEA, www.netlib.org 2374x5323x30230 (0.24%)
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GREENBEA/20 – the giant core (1105 constraints)
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GREENBEA_1 1313 cnst, |IS | = 1075 , 18148 ars

Nurminski FEFU



Projection methods Least norm problem Computational issues Numerical experience

GREENBEA_2 866 cnst, |IS | = 447 , 9938 arcs
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GREENBEA_3 685 cnst, |IS | = 181 , 7415 arcs
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GREENBEA_4 549 cnst, |IS | = 136 , 5490 arcs
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GREENBEA_5 450 cnst, |IS | = 99 , 4310 arcs
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GREENBEA_6 350 cnst, |IS | = 99 , 3135 arcs
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GREENBEA_7 264 cnst, |IS | = 81 , 2470 arcs
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GREENBEA_8 191 cnst, |IS | = 67 , 1960 arcs
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GREENBEA_9 149 cnst, |IS | = 40 , 1601 arcs
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Desc Nodes Arcs Av.degree Indp. set

GREENBEA_1 2388 34294 6.9633 1075
GREENBEA_2 1313 18148 7.2350 447
GREENBEA_3 866 9938 8.7140 181
GREENBEA_4 685 7415 9.2380 136
GREENBEA_5 549 5490 10.0000 99
GREENBEA_6 450 4310 10.4408 99
GREENBEA_7 350 3135 11.1643 81
GREENBEA_7 264 2470 10.6883 67
GREENBEA_9 191 1960 9.7449 40
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Convergence of the projection procedure
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Almost Gigabyte-Optimization
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