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Abstract—A method to solve the convex problems of nondifferentiable optimization relying on
the basic philosophy of the method of conjugate gradients and coinciding with it in the case
of quadratic functions was presented. Its basic distinction from the earlier counterparts lies in
the a priori fixed constraint on the memory size which is independent of the accuracy of the
resulting solution. Numerical experiments suggest practically linear rate of convergence of this
algorithm.
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1. INTRODUCTION

The present paper considers the convex problem of nondifferentiable optimization

min
x∈E

f(x) = f�, (1)

where E is a finite-dimensional Euclidean space with the ordinary scalar product xy and the
corresponding norm ‖x‖ =

√
xx. It is assumed that problem (1) is well-defined in the sense that

its solution does exist. For such problems, the paper aims at suggesting a method of the conjugate
gradient type with a priori fixed boundary of the memory used, proving its convergence, and
presenting some encouraging results of the computer experiments.

The most general methods for solution of problem (1) make use of the so-called subgradient
oracles enabling one to calculate at an arbitrary point the value of the objective function f(x)
and some subgradient g from the subdifferential set ∂f(x). The simplest of such methods is the
subgradient algorithm

xk+1 = xk − λkg
k, gk ∈ ∂f(xk), k = 0, 1, . . . , (2)

actively studied beginning from the pioneering works of Shor [1] and Polyak [2]. It was shown in
the most general case that under very weak conditions (2) converges to solution (1) if the step
multipliers λk satisfy the conditions

∑
k λk = ∞, λk → +0 for “series divergence.” However, the

numerical experiments and theoretical analysis demonstrated that this rule for selection of the
step multipliers usually results in slow convergence. That is why search of new, more efficient
algorithms such as, in particular, numerous variants of the quadratic-linear algorithms using the
piecewise-linear models of the nonsmooth objective functions and quadratic corrections intention-
ally increasing the accuracy of these approximations [3–5] was started actually immediately. The
concepts of variable metric [6] in practice proved to be very effective. Among the latest ideas in this
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field, smoothing combined with the optimal gradient schemes of smooth optimization [7], splitting
in the smoothness-nonsmoothness subspaces (the so-called UV -algorithms [8]) deserve mentioning.

At the same time, consideration was given beginning from [9, 10] to the analogs of the method
of conjugate gradients [11–13]. These studies developed mostly along two lines of research. In the
first line descending from the initial works of Ph. Wolfe [9, 10] the algorithms used the accumulated
packet of subgradients obtained at some prehistory of the current iteration. This subgradient
packet was used in the attempt to construct the direction of descent of the objective function as
the solution of the problem

‖pk‖2 = min ‖p‖2
p∈co{g0,g1,...,gk},

gi∈∂f(xi), i=0,1,...,k

, (3)

where x0, x1, . . . , xk is the history of the preceding iterations (tentative and working steps). For
simplicity of notation, we consider here the prehistory starting from the zero (initial) iteration.

Depending on various conditions, either the algorithm is restarted which can be regarded as the
change of the initial point, or the information is further accumulated using the tentative steps, or
a working step like

xk+1 = xk − λkp
k (4)

is performed, where λk is determined by a precise or approximate one-dimensional optimization.
The difficulty of this approach lies in the fact that the volume of the accumulated packet of subgra-
dients is defined by the estimated accuracy of the solution obtained in the given cycle, and grows
indefinitely with accuracy. Apart from the increased memory overhead and growth in the volume
of the processed data, under a sufficiently rapid growth in the volume of calculations this leads
to undesirable algorithmic consequences where for many subsequent iterations some bad tentative
step may complicate the search of a good direction of descent.

The second line may be regarded as an approximate solution of problem (3) with the use of the
Polak–Ribiere formula for construction of the conjugate directions; see, for example, [11, 12] where
the constant step multipliers and constant weight coefficients were used. However, the computer
experiments with these algorithms demonstrated that, for example, in the case of lack of the acute
“minimum” the number of tentative steps grows progressively. Convergence of the algorithm was
strongly retarded in terms of the wasted time. Nevertheless, for the smooth extremal problems
these methods demonstrated quite good results and currently are actively studied under the name
of the shortest residuals (SR) methods [14–16].

In the present paper, these approaches are in a sense combined for solution of the problem of
convex nondifferentiable optimization. The proposed variant of the method of conjugate subgradi-
ents, on the one hand, retains the advantages of the Wolfe method lying in the synthetic use of the
subgradient packet and, on the other hand, bounds the computational burden for processing this
packet. The latter is attained through the a priori constraints on the size of packet upon reaching
which the algorithm is restarted.

2. METHOD OF CONJUGATE CONSTRAINED-MEMORY SUBGRADIENTS

Let us consider the method of conjugate constrained-memory subgradients as a rule for con-
structing the sequence xk, k = 0, 1, . . . , converging under certain conditions to the solution of
problem (1). This rule makes use of the packet of subgradients accumulated and modified as the
algorithm works. In the general form, the packet G(z, s, t) consists of the initializing vector z and
the subgradient gi ∈ ∂f(xi), i = s, s+ 1, . . . , t, calculated at the iterations s, s+ 1, . . . , t:

G(z, s, t) = {z, gi ∈ ∂f(xi), i = s, s+ 1, . . . , t}.
AUTOMATION AND REMOTE CONTROL Vol. 75 No. 4 2014



648 NURMINSKII, TIEN

The initializing vector z is used for information transmission at the restarts of the algorithm. To
simplify notation, the convex hull of the finite set G(z, s, t) is denoted by Gco(z, s, t).

The packet G(z, s, t) consists at most of N +1 vector, where N is a fixed input parameter. The
control sequence of δk → +0, k = 0, 1, . . . , which is an equivalent of the accuracy of satisfying the
optimality conditions is also defined in the algorithm.

The algorithm constructs sequences of iterations interrupted by the instants of restart during
which the packet G(·, ·, ·) is cleared of the accumulated subgradients and the initializing vector is
modified. The algorithm is restarted upon satisfaction of at least one condition: either the number
of subgradients in the packet reaches the maximal value N or the norm of the shortest vector
in the convex hull of the packet Gco(·, ·, ·) drops below the current estimate of satisfaction of the
optimality conditions. With the introduced notation, the method is as follows.

Initialization. Set up the initial values of the restart counter r = 0 and iteration counter t = 0,
and determine the initial instant tr = 0 of restart. Define the maximal size N of the subgradient
packet, sequence of accuracy estimates {δk}, and the initial point x0. Calculate g0 ∈ ∂f(x0), set
up to g0 the coordinating vector z0, and assume that the initial packet G0 = G(z0, 0, 0) is equal
to {g0, g0}.

The current t+1st iteration is carried out as follows, provided that t iterations were carried out
during which r restarts occurred, the last one at the instant tr < t.

t+ 1st iteration.

Step 1. Solve the problem of finding an element of the minimal Euclidean norm

min
p∈Gco(zr,tr ,t)

‖p‖2 = ‖pt‖2 (5)

and go to Step 2 if ‖pt‖ > δr.
If ‖pt‖ � δr, then restart the algorithm with increased requirements on the accuracy of satis-
fying the optimality conditions:

• increment the restart counter r = r+1 and update completely the packet of subgradients:

tr = t, zr = gt ∈ ∂f(xt), G(zr, t, t) = {gt}; (6)

• repeat Step 1.
Step 2. Solve the one-dimensional problem

min
λ

f(xt − λpt) = f(xt − λtp
t) = f(xt+1) � f(xt) (7)

and select gt+1 ∈ ∂f(xt+1) such that gt+1pt = 0. The optimality condition for this problem
guarantees existence of such gt+1 even for λt = 0. At determination of the point xt+1 by
dichotomy as the limit of the embedded intervals [xt − λ−

k p
t, xt − λ+

k p
t], k = 0, 1, . . . , with

gk−pt = α−
k < 0 and gk+p

t = α+
k > 0, where gk− ∈ ∂f(xt − λ−

k p
t) and gk+ ∈ ∂f(xt − λ+

k p
t),

such vector can be found as the limit of the sequence ḡk = γkg
k− + (1 − γk)g

k
+, k = 0, 1, . . . ,

where γk =
α+
k

α+
k
−α−

k

∈ [0, 1] and makes ḡkpt vanish. By the semicontinuity from above of the

subdifferential map ∂f , the vector gt+1 = limk→∞ ḡk ∈ ∂f(xt+1) where the limit possibly must
be taken in the arbitrary converging subsequence.

Step 3. Complement the set G(zr, tr, t) by the vector gt+1:

G(zr, tr, t+ 1) = {G(zr , tr, t), g
t+1},

increase the iteration counter to t → t+ 1 and go to Step 4.
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Step 4. Upon reaching the limits on the memory size, this step restarts the algorithm without
modifying the restart counter and the current estimate of solution accuracy. If t − tr � N ,
then change the coordinating vector zr = pt, redefine the instant of the last restart tr = t,
initialize the packet of subgradients G(zr, tr, t) = {zr, gt}, gt ∈ ∂f(xt), and go to Step 1.

3. CONVERGENCE OF THE ALGORITHM

Convergence of the algorithm is studied using the convergence conditions discussed in detail
in [17]. From the point of view of these conditions, the algorithm to solve the optimization problem
is a kind of rule for constructing the sequence of approximate solutions {xk} which should converge
to some desired set X� defined usually by the corresponding optimality conditions.

The weak form of convergence (convergence in subsequence) is ensured if the following conditions
are met:

A1. Sequence {xk} is restricted.

A2. There exists a continuous function W (x) : E → R such that if {xk} has the limit point x′ /∈ X�,
then this sequence has another limit point x′′ such that W (x′′) < W (x′).

If these conditions are met, then the sequence {xk} has the limit point x� ∈ X�.

The strong form of convergence of {xk} to the set X� exists under somewhat stronger conditions:

B1. The sequence {xk} is limited.

B2. For an arbitrary subsequence {xkt} → x′ /∈ X� and t → ∞, there exists ε > 0 such that for
any t there is an instant of leaving the neighborhood of x′:

mt = inf
{
m : ‖xkt − xm‖ > ε

}
< ∞. (8)

B3. There exists a continuous function W (x) : E → R such that

lim sup
t→∞

W (xmt) < lim
t→∞W (xkt) = W (x′) (9)

for all subsequences {xkt}, {xmt} satisfying condition B2.

B4. The set W� = {W (x�), x� ∈ X�} such that R \W� is dense everywhere.

B5. If {xkt} → x� ∈ X�, then ‖xkt+1 − xkt‖ → 0 for t → ∞.

If these conditions are met, then all limit points of {xk} belong to X� [17].

The following theorem can be proved using the above conditions for convergence.

Theorem 1. Let f be finite and strongly convex, and the Lebesgue set {x : f(x) � f(x0)} be
bounded. Then, {xt} converges to the single solution of problem (1).

Proof. To apply conditions B1–B5, we first of all define the set X� as the point of x� satisfying
the necessary, and in the case at hand also sufficient, optimality conditions 0 ∈ ∂f(x�).

In virtue of monotonicity of the method, all elements of the sequence {xt} belong to the bounded
set {x : f(x) � f(x0)}, so that condition B1 is satisfied trivially. Now we assume that condi-
tion B2 is not met, the entire sequence {xt} converges to some point x′ /∈ X� where correspond-
ingly 0 /∈ ∂f(x′). By virtue of the upper semicontinuity of ∂f and finiteness of f , there exists a
sufficiently small ε > 0 such that for some 0 < γ < Γ < ∞ there exist estimates γ � ‖g‖ � Γ for
any g ∈ ∂f(x), ‖x − x′‖ � 4ε. We omit the dependence of γ and Γ on x′ and ε because in the
reasoning below they are fixed.

We show that under the above assumption there arises an infinite sequence k = 0, 1, . . . of
iterations such that ‖zk‖ � δk → 0. Indeed, if this is not the case, then there exists k̄ such that
‖pt‖ � δk̄ for all t > tk̄. We can assume without loss of generality that t is so great that ‖xt−x′‖ � ε.
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The assumption of boundedness of k̄ as a matter of fact means that, as soon as the maximal size
of the vector packet G(·) is reached, all subsequent restarts occur according only to Step 4.

Then, for tk̄ < t � tk̄ +N

‖zt‖2 = min ‖z‖2
z∈Gco(zk̄, tk̄ ,t)

� min ‖z‖2
z∈co{zk̄,gtk̄+1}

.

The concluding minimum can be easily estimated from above as follows:

min
λ∈[0,1]

∥
∥
∥λzk̄ + (1− λ)gtk̄+1

∥
∥
∥
2

= min
λ∈[0,1]

{
λ2‖zk̄‖2 + (1− λ)2‖gtk̄+1‖2

}
= λ�‖zk̄‖2,

(10)

where

λ� =
‖gtk̄+1‖2

‖zk̄‖2 + ‖gtk̄+1‖2
solves (10).

Taking into consideration that ‖zk̄‖ is globally bounded by some constant C � ‖g‖, g ∈ ∂f(z),
f(z) � f(x0) and ‖gtk̄+1‖ � γ, for λ�, it is easy to establish the estimate

λ� � 1/(1 + γ2/C2) = θ < 1,

which means that ‖zk‖2, k = k̄, k̄ + 1, . . . , decreases at least at the rate of geometric progression
with the denominator θ, and, consequently, tends to 0, which contradicts the initial assumption.

This contradiction implies that

(a) either {xt} → x� (and the theorem is proved);

(b) or {xt} → x′ /∈ X�, but at that ‖zk‖ → 0 for k → ∞;

(c) or for any limit point x′ /∈ X�, the sequence {xt} leaves any its sufficiently small neighborhood
an infinite number of times.

It follows from (c) that condition B2 is satisfied at least in this case. To make sure once and for
all that there is no doubt that condition B2 is satisfied, it remains to demonstrate that case (b) is
excluded.

For that we assume that ε > 0 is so small that the set G̃ = co{∂f (x), ‖x − x′‖ � 4ε} is strictly
separable from zero, that is, there exist the vector p, ‖p‖ = 1, and δ > 0 such that pg � δ for all
g ∈ G̃. Since for sufficiently great t the points ‖xt − x′‖ � ε, from the instant of some restart with
full update (6) also zr ∈ G̃, that is, pzr � δ > 0, which rules out zr → 0.

Now we demonstrate that condition B3 is also satisfied, but first we ensure satisfaction of con-
ditions B4, B5 and define for that the convergence indicator W (x) = ‖x−x�‖2 which is traditional
for the convex problems, where x� is a single element of the set X� in virtue of strong convexity.
We notice that this mechanically entails satisfaction of B4.

It is easy to demonstrate that for t → ∞ the sequence ‖xt+1 − xt‖ → 0, which is even stronger
than B5. Indeed, the elements of the sequence {xt} are related by xt+1 = xt−αtp

t, where the step
multiplier αt is selected so that there exists the subgradient ḡt+1 ∈ ∂f(xt+1) such that

ḡt+1pt = 0 = gt+1(xt+1 − xt). (11)

Since f(xt+1) � f(xt), in virtue of boundedness f(xt) → f̄ for t → ∞.
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Assuming that xt → x′, xt+1 → x′′, ḡt+1 → ḡ, we notice that f(x′) = f(x′′) = f̄ and ḡ ∈ ∂f(x′′)
in virtue of upper semicontinuity of df(x). By passing in (11) to the limit and using the strong
convexity with some constant of strong convexity σ > 0

f(xt)− f(xt+1) � ḡt+1(xt − xt+1) + σ‖xt − xt+1‖2 = σ‖xt − xt+1‖2 � 0

we obtain
0 = f(x′)− f(x′′) = σ‖x′ − x′′‖2 � 0

or ‖xt+1 − xt‖ → 0 for t → ∞, which proves B5.

To pass to condition B3, we denote by {mk} and {nk}, k = 0, 1, . . . , the index sequences
such that xnk → x′ �= x� there exists ε > 0 such that ‖xmk − xnk‖ > ε and ‖xt − xnk‖ � ε for all
nk � t < mk. To satisfy the above estimates, this ε may be regarded arbitrarily small.

The sequence {xnk} by construction converges to x′, and {xmk} is the sequence of the first exits
from the ε-neighborhoods of the corresponding points xnk .

Let qk < nk be the maximal index not exceeding nk such that G(·, ·, ·) was updated and pk is
the minimal index exceeding nk when G(·, ·, ·) was updated for the next time. Independently of
the form of restart, pk − nk � pk − qk � N and, consequently,

‖xpk − xnk‖ �
pk−1∑

t=nk

‖xt+1 − xt‖ � N sup
t�nk

‖xt+1 − xt‖ → 0

for k → ∞.

Therefore, xpk → x′ and, consequently, limk→∞W (xpk) = limk→∞W (xnk) = W (x′). The proof
of

lim
k→∞

W (xpk) > lim sup
k→∞

W (xmk) (12)

is equivalent to the proof of B3.

To prove (12), we notice that for all t such that pk � t < mk we have pt ∈ co{∂f(x), ‖x− x′‖ �
4ε} = G̃ for sufficiently small ε > 0.

By virtue of the Carathéodori theorem, an arbitrary p ∈ G̃ is representable as p =
∑n+1

i=1 λig
i,

where gi ∈ ∂f(yi), ‖yi − x�‖ � 4ε, λi � 0,
∑n+1

i=1 λi = 1. In virtue of convexity, 0 < γ < f(yi) −
f(x�) � gi(yi − x�) which by virtue of its continuity can be rearranged in

0 < γ/2 � gi(x′ − x�). (13)

By multiplying (13) by λi and summing up, we obtain p(x′ − x�) � γ/2.

Now we consider t such that pk � t < mk and

W (xt+1)−W (xt) = ‖xt − αtp
t − x�‖2 − ‖xt − x�‖2

= −αtp
t(xt − x�) + α2

t ‖pt‖2.
Again, pt(xt − x�) � γ/4 in virtue of continuity, and, consequently,

W (xt+1)−W (xt) � −αtγ/2 + α2
t ‖pt‖2. (14)

Since αt‖pt‖ → 0 but ‖pt‖ � κ > 0 (G̃ can be strictly separated from 0 in virtue of convexity),
αt → 0 which implies that the last term in (14) can be disregarded. Therefore, for pk � t < mk

W (xt+1)−W (xt) � −αtγ/4,
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which after summation provides

W (xmk)−W (xpk) � −γ
mk−1∑

t=pk

αt/4 < 0.

Since

ε/2 < ‖xmk − xpk‖ �
mk−1∑

t=pk

αt‖pt‖ � C
mk−1∑

t=pk

αt,

∑mk−1
t=pk

αt � ε/2C and
W (xmk)−W (xpk) � −γε/8C < 0.

The passage to the limit for k → ∞ proves B3 and, consequently convergence of the algorithm.
Interestingly, the strong convexity of the objective function in problem (1) played a technical role
in the proof and may be removed by a slight complication of both the algorithm and the proof.
The assumption of finite size N of the packet and the full update mechanism (6) plays an essential
role in the proof enabling one to “forget” the possibly unlucky prehistory of search. At the same
time, the complete loss of information at full update (6) plays, possibly, the part of the bad guy
forcing one to waste a certain number of calls to the subgradient oracle in order to accumulate
a sufficiently representative packet G. Here, search of an acceptable compromise seems to be of
interest for future research.

4. RELATION WITH THE METHOD OF CONJUGATE GRADIENTS

It is known from the theory of quasi-Newton algorithms that some variants of algorithms of the
Broyden type represent corrections of the quasi-Newton matrices having the least matrix norm, the
Frobenius norm, in particular. Interestingly, the principle of constructing the direction of search as
a minimal Euclidean-norm element that was used in the proposed algorithm in the classical case
of strongly convex quadratic objective functions also gives the traditional algorithm of conjugate
gradients [19].

Indeed, let {g1, . . . , gk} be a collection of the gradients of the strongly convex quadratic objective
function obtained at the k precious iterations regarded as mutually orthogonal and obtained as the
result of one-dimensional minimization along the corresponding conjugate directions p1, . . . , pk.
The corresponding problem Pk of finding the search direction is given by

min
1

2

∥
∥
∥
∥
∥

k∑

i=1

λig
i

∥
∥
∥
∥
∥

2

∑k

i=1
λi=1, λi�0, i=1,...,k

= min
1

2

k∑

i=1

λ2
i ‖gi‖2

∑k

i=1
λi=1, λi�0, i=1,...,k

. (15)

If gi � 0, i = 1, . . . , n, are mutually orthogonal, then the solutions of problem Pk and Pk+1 represent
the conjugate vectors. To demonstrate this fact, we consider the solution of Pk+1 defined by the
optimality conditions in (15):

λi‖gi‖2 + θ = 0, i = 1, 2, . . . , k + 1; θ
k+1∑

i=1

‖gi‖−2 = −1. (16)

We disregard the constraints on nonnegativeness of λi because, as will be shown below, they are
satisfied mechanically.

It follows from (16) that

λj = ‖gj‖−2

(
k+1∑

i=1

‖gi‖−2

)−1

, j = 1, . . . , k + 1 � 0
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and, consequently, the nonnegativeness conditions are satisfied mechanically.

We denote

σk+1 =
k+1∑

i=1

‖gi‖−2 = σk + ‖gk+1‖−2.

Then,

pk+1 =
k+1∑

i=1

λig
i =

k∑

i=1

λig
i + λk+1g

k+1

=
k∑

i=1

‖gi‖−2(σk + ‖gk+1‖−2)−1gi + ‖gk+1‖−2(σk + ‖gk+1‖−2)−1gk+1

= (σk + ‖gk+1‖−2)−1

(

gk+1 + ‖gk+1‖−2
k∑

i=1

‖gi‖−2gi
)

= θk+1

(

gk+1 + ‖gk‖−2‖gk+1‖2
(

‖gk‖2
k∑

i=1

‖gi‖−2gi
))

= θk(g
k+1 + ‖gk‖−2‖gk+1‖2zk) = θk(g

k+1 + μk+1p
k),

where μk+1 = ‖gk+1‖2/‖gk‖2 and, consequently, pk+1 was determined using the classical Polak-
Ribiere formula to within the scaling multiplier θk. Whence it follows that pk+1 is conjugate
to p1, . . . , pk. Since the scaling multiplier is of no importance in the subsequent one-dimensional
minimization along pk+1, the gradient gk+2 is orthogonal to all preceding gradients and the resulting
sequence of iterations coincides with the method of conjugate gradients.

5. NUMERICAL EXPERIMENT

To demonstrate in practice the computational characteristics of the propose method, we consider
the results of numerical experiments with the well-known piecewise-quadratic test function maxqfg

given by
f(x) = max

1�k�5
φk(x),

where φk(x) = xAkx − bkx and A(k), k = 1, . . . , 5, are the symmetrical positive definite 10 × 10
matrices

A
(k)
ij =

⎧
⎪⎪⎨

⎪⎪⎩

exp(min(i, j)/max(i, j)) cos(ij) sin(k), i �= j

i| sin(k)|/10 +
∑

l=1,...,10,l �=i

|A(k)
il |, i = j,

i, j = 1, . . . , 10,

bki = exp(i/k) sin(ik), i = 1, . . . , 10, k = 1, . . . , 5.

This problem clearly demonstrate the difficulties of solving the piecewise-quadratic problems of
convex nonsmooth optimization because it combines both the problems of nonsmooth nature (dis-
continuity of gradients) and smooth optimization (ravinity of the Lebesgue sets). The attempts
to solve this problem by simple subgradient algorithms encounter serious difficulties because the
acute minimum condition is not satisfied here and at the optimal point the subdifferential set has
an empty interior, only three of the five functions φk(x) being active at the best. This means that in
the subspace orthogonal to the linear hull of the subdifferential the function behaves quadratically
and there exists degeneracy in terms of the relation of the “inscribed and circumscribed spheres”
for the subdifferential sets.
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Fig. 1. Convergence of the conjugate subgradient method for the piecewise-quadratic function maxquad. Shown
is the relative accuracy of determining the minimum of rel = (f(xk)− f�)/|f�| vs. the number t of iterations
of the algorithm at increasing the size of the maximal packet of subgradients nb: (1) nb = 10, (2) nb = 15,
(3) nb = 20, (4) nb = 40.

Fig. 2. Convergence of the conjugate subgradient method for the piecewise-quadratic function maxquad. Shown
is the relative accuracy of determining the minimum of rel = (f(xk)− f�)/|f�| vs. the number t of iterations
of the algorithm at reducing the size of the maximal packet of subgradients nb: (1) nb = 2, (2) nb = 6,
(3) nb = 10.

Figures 1 and 2 demonstrate convergence in the objective function of the method of conjugate
subgradient for different maximal dimensions of the subgradient packets. To avoid complications
of graphics, the trajectories of algorithm’s operation is divided into two classes: from the best
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choice of the maximal packet of subgradients toward its reduction (Fig. 2) and toward increase
(Fig. 1). As can be seen from the presented graphs, in all cases the method’s convergence remains
approximately linear and practically unattainable for the subgradient algorithms. Despite all efforts
to select the step multipliers in (2), the ordinary subgradient method was capable to provide the
accuracy of 10−2 only after 5000 iterations.

It deserves noting that the method of conjugate subgradients somewhat improved also the pre-
vious record for this function. The optimal value in this problem is −0.8414083345821985 to within
sixteen significant digits and is reached at the point shown in the table.

Point of minimum for maxquad

1 0.1262565919226512 6 0.2783995015309495
2 0.0343783011310847 7 –0.0742186640960634
3 0.0068571878440697 8 –0.1385240462792682
4 –0.0263606695458208 9 –0.0840312187567561
5 –0.0672949264854349 10 –0.0385803073994817

It deserves to pay attention to the horizontal parts of the graphs of Figs. 1 and 2 which correspond
to the zero solutions of the problem of one-dimensional minimization (7). During such iterations
information is in fact collected for seeking the direction of decrease of the objective function. The
fact that the number of tentative steps actually remains invariable over the entire accuracy range
and does not increase with approaching the extremum and the corresponding degradation of the
computation conditionality is the remarkable distinction of the algorithm.

6. CONCLUSIONS

For the problems of convex nondifferentiable optimization, it was possible to carry out a complete
theoretical substantiation of the analog of the method of conjugate gradients with the a priori lim-
ited memory. The proposed algorithm is free of two basic disadvantages of the previously suggested
its counterparts such as the unlimited requirements on the memory and/or substantial growth in the
number of tentative iterations to seek the direction to improve the objective function at approaching
the extremum. The computer experiment with the test problem of nondifferentiable optimization
presenting essential difficulties to the subgradient algorithms proved to be quite encouraging, which
allows one to anticipate the practical use of the results obtained.
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