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Abstract—Replication of a portfolio of market assets under a conditional mean loss criterion
is studied. This problem with a risk constraint as the conditional mean loss is studied as a
structural extremal problem with binding variables and two groups of constraints. For a large
number of assets and continual planning horizons, special methods based on the forward-dual
decomposition algorithms are fruitful. Results of numerical experiments are given.

1. INTRODUCTION

Operations in financial (exchange) markets consist in investing free monetary resources for ob-
taining income from purchase and sale of market assets. These assets are characterized by different
yield indexes defined by a long-range trend in the behavior of market prices and different degrees of
volatility. Variability and unpredictability of future prices create for portfolio investors risks, which
must be controlled. The traditional measures of risk are variance of the portfolio [1] and quantile
criterion VaR (Value-at-Risk). At present, conditional mean loss CVaR (Conditional Value-at-Risk)
criteria are widely used. Risk control is used not only in financial models, in particular, the quan-
tile criterion in investment problems [2], as well as in two-stage stochastic programming [3] and
aerospace applications [4].

In investment problems, the main concept is the portfolio, which is described by a vector x ∈
X ⊆ Rn, whose ith component defines the number of units of asset i, i = 1, . . . , n, in the portfolio.
The stochastic component of the model is included in the vector y of market prices of assets. This
component is a random variable of the set Y ⊆ Rn on which a probabilistic measure P is defined.
Economic losses are described by a function f(x, y) defining the loss for a given portfolio x and
observed price quotation y ∈ Y .

Let the loss distribution function be Ψ(x, ξ) , P{y|f(x, y) 6 ξ} for a given loss function f(x, y)
and probabilistic measure P. By definition, the quantile loss function is

VaRα(x) , min{ξ | Ψ(x, ξ) > α},

where α ∈ (0, 1) is a given probability level.
While the value of VaR for a given probability α and a chosen portfolio x is defined to be the

minimal loss ξ under which the loss probability is not greater than ξ but greater than α, the value
of CVaR is defined to be the conditional mean loss greater than VaR:

CVaRα(x) , M{f(x, y) | f(x, y) > VaRα(x)}.

Let us state the assertions that play a pivotal role in investigations based on the use of CVaR.
Their proofs are given in [5].
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Theorem 1. For ξ ∈ R, let a scalar function be defined by the expression

Fα(x, ξ) , ξ +
1

(1− α)
M[f(x, y)− ξ]+ (1)

and let [t]+ , max{0, t}. Then CVaRα(x) = min
ξ
Fα(x, ξ).

A wide class of financial problems is represented by convex loss functions f(x, y) of x. An
important property of the CVaR criterion is the convexity of the function CVaRα(x) in x and
convexity of the function Fα(x, ξ) (1) in (x, ξ) ∈ X × R for the convex loss functions f(x, y) in x.
In this case, the minimization of the conditional mean loss CVaRα(x) for x is equivalent to the
minimization of the function Fα(x, ξ) on (x, ξ) ∈ X × R.

The following theorem is important in practical problems with a constraint on the admissible
risk level in the conditional mean loss CVaR [5].

Theorem 2. Let g(x) be a scalar function defined for x ∈ X ⊆ Rn and let Fα(x, ξ) be a scalar
function (1) for ξ ∈ R. Then, for given probability level α ∈ (0, 1) and admissible loss level ω ∈ R,
the problem

min
x∈X

g(x) if CVaRα(x) 6 ω

is equivalent to the problem

min
x∈X,ξ∈R

g(x) if Fα(x, ξ) 6 ω.

The properties of the VaR and CVaR criteria and their application in financial problems are
described in [5, 6].

2. PORTFOLIO REPLICATION

The problem of portfolio replication [5, 7]) is encountered when an investor desires to fix ex ante
the portfolio structure in some planning horizon so that the portfolio cost at the final instant, if
future prices of market assets are known, is equal to a given cost. The investor minimizes his loss.
By loss, we mean the measure of difference between the market price of his portfolio and the cost
of a reference portfolio consisting only of standard assets. An additional constraint may restrict
the maximal loss to be less than a predefined measure. In this paper, this measure is defined by
the conditional mean loss corresponding to the CVaR criterion.

Let the dynamics of price It of the standard asset be known. The investor can buy Sj assets.
Their price dynamics is defined by a set of time series ptj , t = 1, . . . , T, j = 1, . . . , n. Let ν be the
planned cost of the portfolio at the final instant T . Then θ = ν/IT is the number of units of the
standard asset in the reference portfolio consisting only of this asset of price ν at the instant T . The
parameters θIt describe the cost dynamics of such a portfolio at intermediate instants t = 1, . . . , T .
Let xj be the number of units of assets Sj in the investor’s portfolio in the period [1, T ]. Then
n∑
j=1

ptjxj is the cost of the portfolio at the instant t. The loss at the instant t is defined by

ft(x, p) =

θIt − n∑
j=1

ptjxj

/θIt,
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which is the relative difference between the cost of the portfolio of market assets at the instant t
and the cost of a portfolio consisting only of standard assets at instant t. This problem describes
the desire of the investor to learn in the interval [1, T ] how to use the optimal portfolio of a given
cost ν with minimal loss in the future ν.

The vectors p1, p2, . . . , pT are the antecedent costs, which can be regarded as a sample from
some general population. Using this information, if there is no hypothesis on the nature of random
processes, we can construct only an empirical distribution function and write (1) approximately as

Fα(x, ξ) = ξ +
1

(1− α)
M̃[f(x, pt)− ξ]+,

where M̃ is the expectation for the empirical distribution function.
For stationary and statistically independent cost vectors, the empirical distribution function is

concentrated on atoms {p1, p2, . . . , pT } with identical weights 1/T . Moreover,

M̃[f(x, pt)− ξ]+ =
1
T

T∑
t=1

[f(x, pt)− ξ]+.

Therefore,

Fα(x, ξ) = ξ +
1

(1− α)T

T∑
t=1

θIt − n∑
j=1

ptjxj

/θIt
− ξ

+

.

The problem of the investor is to choose a portfolio of assets xj such that

(1) the mean absolute loss g(x) = (1/T )
T∑
t=1
|ft(x, p)| is minimal,

(2) the portfolio cost at the final instant is ν, and
(3) the conditional mean loss in the sense of the CVaR criterion for a given probability level α

is not greater than a given ω.
According to Theorem 2, the condition CVaRα(x) 6 ω in the problem of minimization of the

function g(x) can be replaced by the constraint Fα(x, ξ) 6 ω in the problem of minimization of
g(x) for the variables x and ξ.

Thus, the problem of the investor is to minimize the functional

g(x) = (1/T )
T∑
t=1

∣∣∣∣∣∣
θIt − n∑

j=1

ptjxj

/θIt
∣∣∣∣∣∣ (2)

for x and ξ under the constraints

ξ +
1

(1− α)T

T∑
t=1

θIt − n∑
j=1

ptjxj

/θIt
− ξ

+

6 ω, (3)

n∑
j=1

pTjxj = ν, xj > 0. (4)

In what follows, we take β = 1/[(1 − α)T ]. Introducing the variables

ηt =

∣∣∣∣∣∣
θIt − n∑

j=1

ptjxj

/θIt
∣∣∣∣∣∣ > 0,

st =

θIt − n∑
j=1

ptjxj

/θIt
− ξ

+

> 0,
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we reduce problem (2)–(4) to the linear programming problem

min
xj ,ξ,ηt,st

(1/T )
T∑
t=1

ηt, (5)

ηt >

θIt − n∑
j=1

ptjxj

/θIt > −ηt, (6)

θIt − n∑
j=1

ptjxj

/θIt
− ξ − st 6 0, (7)

ξ + β
T∑
t=1

st 6 ω,
n∑
j=1

pTjxj = ν (8)

under the condition that the variables xj , ηt, and st are nonnegative.
Problem (5)–(8) contains (3T + 2) constraints and (2T + n + 1) variables. The problem of the

investor in a developed financial market is to invest free financial resources in a large number of
assets, whose cost may vary every minute. Since the dimension of the linear programming problem
is large, we must apply methods that do not require a large memory and time for solution.

3. DECOMPOSITION OF THE PORTFOLIO REPLICATION PROBLEM

Decomposition schemes reduce problem (5)–(8) to subproblems of lesser dimension. These
subproblems are modified and intermediate results are exchanged between them. Such schemes
have been developed since the beginning of the sixties of the last century [8]. Parallel computation
techniques have paved the way for applying decomposition methods from a new standpoint.

The forward-dual cutting algorithm of [9] effectively decomposes a two-block linear programming
problem with a relatively small number of connecting variables. In [10], this approach is modified,
widening the class of linear programming problems solvable by this algorithm. The forward-dual
cutting algorithm can be regarded as the joint application of the Dantzig–Wolf algorithm to forward
and dual problems, in each of which the optimized functional is approximated by linear truncations
obtained in the course of the operation of the algorithm. The forward and dual problems are
modified with regard for the new truncations and intermediate solutions are exchanged between
them for improving the solution of the initial problem. This algorithm admits parallel solution of
forward and dual problems.

The base structured optimization problem is defined by the two-block problem

min
zA,zB,x

cAzA + cBzB , (9)

AAzA +BAx 6 dA, (10)
ABzB +BBx 6 dB , (11)

zA > 0, zB > 0, x > 0. (12)

For a fixed x, this problem decomposes into two independent blocks, which are used by the
forward-dual cutting algorithm. The variables x are called the connecting variables since they are
contained in all constraints of the problem, whereas zA and zB are referred to as internal variables.

Let us show that problem (5)–(8) can be expressed in the form (9)–(12). Since the variable ξ is
arbitrary in sign, let us express it in equivalent form as ξ = ξ1 − ξ2 · ξ1 · ξ2 > 0. The variables ηt
form a block of variables zA and the variables ξ1, ξ2, st form a block of variables zB of length T + 2.
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Let P denote a T × n matrix consisting of elements ptj/(θIt), where e is a unit vector and E is a
unit matrix.

Thus, the two-block representation of problem (5)–(8) is reduced to the form (9)–(12)

min{(1/T, . . . , 1/T︸ ︷︷ ︸
T

)ηt + (0, . . . , 0︸ ︷︷ ︸
T+2

)(ξ1, ξ2, s
′
t)
′}, (13)

(
−E
−E

)
ηt +

(
−P
P

)
x 6

(
−e
e

)
, (14)

 e −e E
1 −1 β . . . β
0 0 0 . . . 0

 (ξ1, ξ2, s
′
t)
′ +

 P
0 . . . 0
pT1 . . . pTn

x 6
 e
ω
ν

 , (15)

ηt, ξ1, ξ2, st, x > 0. (16)

In the general two-block problem (9)–(12), functions are defined by

fA(x) , min
zA

AAzA6dA−BAx
zA>0

cAzA, fB(x) , min
zB

AAzB6dB−BBx
zB>0

cBzB . (17)

Then (9)–(12) can be expressed in equivalent form as

min
x
{fA(x) + fB(x)}. (18)

The functions fA(x)) and fB(x) are convex and piecewise-linear. Defining the functions hA(p)
and hB(p) by the conjugates of fA(x) and fB(x), respectively, through the formulas

hA(p) , f∗A(x) = max
x
{px− fA(x)},

hB(p) , f∗B(x) = max
x
{px− fB(x)},

we can express (18) in equivalent form by conjugate functions

min
p
{hA(−p) + hB(p)}. (19)

Such an equivalence between problems (18) and (19) is helpful in organizing the exchange of co-
ordinating information between the forward and dual linear programming problems in the forward-
dual decomposition approach applied to solve problems (9)–(12).

This method consists in replacing the function fB(x) in (18) and the function hA(p) in (19)
by their outer piecewise-linear approximations obtained in the course of solving subproblems and
exchange of forward-dual information. Solving the approximate variants of problems (18) and (19),
we obtain the values of the functions fB(x) and hA(p) and their subgradients. Thus we obtain new
linear truncations to be added to the forward and dual problems, which refine the piecewise-linear
approximations of fB(x) and hA(p). Computational aspects of the forward-dual cutting algorithm
are described in [9, 10].

4. NUMERICAL EXPERIMENTS

In numerical experiments, we used the data on the prices of 10 assets (AA, GE, JNJ, MSFT,
AXP, GM, JPM, PG, BA, HD) from 30 assets in the Dow Jones Industrial (DJI) index for the
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Fig. 1. Dynamics of the cost of the optimal portfolio of the investor x∗ for test 7 (dotted line) and reference
portfolio (solid line).

period from February 3 to April 14, 2003 (61 quotations for each asset), which were taken from the
site at http://finance.yahoo.com. The closing prices were taken to be the market prices of assets
in the portfolio and the DJI index for the above period was taken to be the standard asset.

In all experiments, the portfolio terminal cost ν was taken equal to 1000 and a 0.9 probability
level α was used in determining CVaR. The portfolio replication problem was solved by a modified
forward-dual truncation algorithm [10] that is applicable to the structured problem (13)–(16) and
by the simplex method that is applicable to the problem (13)–(16) without partitioning into blocks.

For numerical computations, we used a two-processor Pentium III, 800 MHz computer. First
we used fifty time periods and the first fifty quotations of the ten 10 assets and standard as-
set, beginning from March 3, 2003, and admissible loss level ω equal to 0.8. The optimal vec-
tor x∗ of assets in the portfolio was equal to (1.11, 5.15, 0, 4.58, 4.82, 0.28, 0, 2.49, 2.79, 8.03).
The constraints CVaRα(x) 6 ω on the admissible level of CVaR in this case was inactive since

CVaR0.9(x∗) = 0.009925. Figure 1 shows the dynamics of the portfolio cost x∗, i.e.,
10∑
j=1

ptjx
∗
j for

t = 1, . . . , 50 (dotted line), and θIt defining the dynamics of the reference portfolio (solid line).
Seven more experiments were conducted to measure T for ω = 0.8. The main characteristics of

experiments are listed in table, where m denotes the number of constraints in problem (13)–(16),
Na+ Nb is the total number of internal variables in the blocks zA and zB , kmax is the number of
forward and dual problems solved by the forward-dual truncation algorithm, MADO is the time of
operation of the forward-dual truncation algorithm in seconds, CM is the time of operation of the

Statistics of test examples

Test T m Na+Nb ω CVaR0.9(x∗) kmax MADO CM MADO/CM

1 17 53 36 0.8 0.004616 2 4.55 4.33 1.05
2 21 65 44 0.8 0.003645 1 7.78 10.23 0.76
3 25 77 52 0.8 0.005778 2 16.00 18.95 0.84
4 30 92 62 0.8 0.003240 1 25.93 41.78 0.62
5 35 107 72 0.8 0.006348 2 44.19 62.05 0.71
6 40 122 82 0.8 0.003890 2 76.88 106.36 0.72
7 50 152 102 0.8 0.009925 2 153.17 245.23 0.62
8 60 182 122 0.8 0.007874 2 279.17 470.24 0.59
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Fig. 2. Time of solution of test example, depending on the number (m) of constraints, by the forward-dual
truncation algorithm (solid line) and the simplex method (dotted line). Both axes show the logarithmic scale.

simplex method in seconds in a problem without partitioning into blocks, and MADO/CM is the
ratio of times of operation of forward-dual algorithm and simplex method.

With the growth of the planning horizon T defining the dimension of the problem, the gain of the
decomposition method increased compared to the solution the problem without any information
on the special structure of constraints. Absolute time of machine operation is not of much interest.
What matters is the relative gain of the forward-dual algorithm compared to the simplex method
without any information on the special structure of constraints. If the optimization packets MINOS
and CPLEX are used, the absolute operation time may differ from the tabulated values, but we
believe that the relative gain of the forward-dual algorithm will remain the same.

Figure 2 shows time of solution of problem (13)–(16) by the forward-dual truncation algorithm
(solid line) and simplex method (dotted line) versus number m of constraints in tests 1-8 char-
acterizing the dimension of the problem. The logarithmic scale is shown in both axes. Since the
estimates are linear, the computational complexity of the forward-dual truncation method may be
believed to be polynomial. The degree of the polynomial estimate in our tests was equal to 3.39,
but the actual complexity of the simplex method applied in a problem without blocks in tests was
proportional to m3.77. For an m of order 1000, computations are 14 fold faster.

5. CONCLUSIONS

Portfolio replication is studied with the CVaR criterion. This problem is reduced to a linear
programming problem, in which the mean absolute value of the relative difference between the costs
of market asset portfolio and reference portfolio in time is minimized. This problem is solved by the
forward-dual decomposition method [9, 10]. Numerical experiments demonstrate that computation
cost for the forward-dual truncation method is reduced compared to the standard simplex method.
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