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Non-smooth optimization

Motivations;
The high-speed conjugate epi-projection (CEP) algorithms;
CEP implementation;

Projection;

Polytopes and polyhedrons;
Decomposition
Linear optimization

Ongoing and planed work.
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Motivations

Motivations

Decomposition: obj(x) = subobj1(x) + subobj2(x) + . . . ,

subobji (x)⇐ modeli (x , . . . ), i = 1, 2 . . . ;

Reduction: min(x ,y)∈Z obj(x , y) = minx reduced .obj(x),

reduced .obj(x) = min
y∈Z(x)

obj(x , y);

Data compression, automatic classification;

Request for robustness (min max problems);

Exact penalties, lagrangian relaxation;

etc.
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CEP

Conjugate subgradient algorithms

Descent direction is found as projection on co{g s , s = 1, 2, . . . }:
1 Wolfe, P.: A Method of Conjugate Subgradients for Minimizing

Nondifferentiable Functions. Mathematical Programming Study, 3,
145-–173 (1975)

2 Li, Q.: Conjugate gradient type methods for the nondifferentiable
convex minimization. Optimization Letters, 7(3), 533—545 (2013)

The same idea can be used for gradient methods for VI.
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CEP

Convex analysis

The problem: minx f (x), f : E → R∞, convex.

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

Epigraph of a conjugate function f ?(g) = supx{xg − f (x)}.
The basic idea:

f ?(0) = −min
x

f (x) = −f? = inf
(0,µ)∈epi f ?

µ.

E.Nurminski CEP Algorithms Huawei RRI Operations Research and Mathematical Optimization Workshop Moscow, September 27-29, 2020 5 / 30



CEP

Conjugate Epi-Projection Algorithm

The algorithm consists of two basic operations:

1 Projection.
min

(ξ,g)∈epi f ?
{(ξ − ξk)2 + ‖g‖2}.

2 Support-Update.
Compute support function vk = (epi f ?)zk and update the
approximate solution with ξk+1

ξk+1 = vk/(f ?(gk
p )− ξk).

E.Nurminski CEP Algorithms Huawei RRI Operations Research and Mathematical Optimization Workshop Moscow, September 27-29, 2020 6 / 30



CEP

Project

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

ξk

Projection of (ξ, 0) onto epi f ?.
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CEP

Support-Update

Conjugate variables g

f
?
(g
)

f ?(0)

O

epif ?

ξk

ξk+1

Compute support function of epi f ?:

sup
g
{x(zk/ξk)− f ?(g)} = f (zk/ξk)
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CEP

Major convergence results

Proved:

If f (x) is just convex the convergence is superlinear:

fk+1 − f? ≤ λk(fk − f?), λk → 0 when k →∞

If f (x) is sup-quadratic the convergence is quadratic:

fk+1 − f? ≤ λ(fk − f?)2, when k →∞

when λ < f0 − f? which garantees convergence.

If f (x) has sharp minimum then convergence is finite.

In all cases convergence is global, ie does not depend on initial point.
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CEP

Implementable version

Conjugate variables g

f ?(0)

O

epif ?

ξk

Approximate epi f ? with Pm = co{z1, z1, . . . , zm} and project.
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CEP

Practicalities

The subproblem for projection polyhedron Pm can be solved by many
off-the-shelf quadratic solvers, however our experience is that the
specialized algorithms like

Nurminski, E.A. Convergence of the Suitable Affine Subspace
Method for Finding the Least Distance to a Simplex. Computa-
tional Mathematics and Mathematical Physics, 45(11), 1915–1922
(2005)

outperforms them.
One can download the PYTHON and/or OCTAVE versions of the code as
DOI: 10.13140/RG.2.2.21281.86882 from ResearchGate.
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CEP

PTP algorithm

Data: P̂ = {p̂1, p̂2, . . . , p̂N}
Result: p? ∈ P = co(P̂) with the minimal norm
Define initial P̄ ⊂ P̂ and the least norm p̄ ∈ lin(P̄) such that
x̄ ∈ co(P̄);

while There is a chance to improve p̄ do

Add some p̂ ∈ P̂ which results in decrease of distance:

min
p∈lin(p̂,P̄)

‖p‖ = ‖ps‖ < ‖p̄‖

Delete p̂ ∈ P̄ with negative baricentrics.

end
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CEP

Run-Time Results

QP – off-the-shelf general purpose quadratic programming subroutine.

PTP – specialized polytope projection.

Run-time dependence on the rows-columns size of X .
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CEP

PTP iterations complexity

PTP run-time dependence on the base size, fitted with the quadratic
approximation 1.833 10−8x2 + 5.764 10−6x + 0.0097
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CEP

Computational experience: CONDOR v CEP

Max-quadratic function:

f (x) = max
i=1,2

(x − ai )Ai (x − ai )

with a1 = (0, 0, 0), a2 = (2, 3, 9) and diagonal matrices Ai :
A1 = diag(9, 4, 1),A2 = diag(1, 4, 9).

CONDOR 1.06 (NEOS) 63 0.4348696068

CEP 27 0.43673
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CEP

Computational experience: RALG v CEP

Test function:
f (x) = max{q1(x), q2(x)}

where:
q1(x) = x2

1/25 + x2
2/4 + x2

3/49,
q2(x) = (x1 − 2)2 + (x2 − 3)2/9 + (x3 − 1)2/25
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Computational projection

Foundations

Orthogonal projection (the most common):

min
x ∈ X

‖x − a‖2 = ‖x?(a)− a‖2 = ‖ΠX (a)− a‖2

where ΠX (a) ∈ X .
Good news:

a) ΠX : E → X — single-valued (follows from strong convexity).

b) Lipschitz continious with the Lipschitz constant LX ≤ 1:
‖ΠX (a)− ΠX (b)‖ ≤ LX‖a− b‖ for any a, b.

Not so good news:

a) It is not so rare that LX = 1 (nonexpansion) so forget about iteration
algorithms.

b) Even if for X the constant LX < 1 it may be VERY close to 1 so
iteration algorithm may be VERY slow.
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Computational projection Simple sets

Trivial cases

boxes, spheres, halfspaces, linear manyfolds — closed form solutions.
Problems become nontrivial for huge dimensions, and/or degenerate
cases but this is another story.

ellipsoid – reducable to 1-dimensional polynom root finding problem
with good bounds for the single positive real root. Smth like n log(ε)
complexity bound for ε-accuracy.

Dual function for ellips projection ψ(u) =
n∑

i=1

z2
i

a2
i (1+u/a2

i )2 = 1
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About 1 mln variables — approx 3.5 sec.
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Computational projection Simple sets

Canonical simplex

Projection problem with many applications X = ∆E

min ‖a− x‖2.
x ∈ ∆E

The number of faces exponential in dimension n, the lowest algorithmic
upper complexity bound is unknown. Algorithms with smth like n log(n)
complexity:

Michelot (C. Michelot, JOTA, 1986)

Malozemov–Tamasyan, Comput. Math. and Math. Phys., 2016)

and probably many others . . .
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Computational projection Simple sets

Michelot algorithm
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Michelot algorithm function [ x iter ] = michelot(z, rho)

x = z;

x += (rho - sum(x)) / rows(x);

iter = 0;

do

bv = (x > 0); nbv = sum(bv);

if !all(bv)

x(!bv) = 0;

x(bv) += ( (rho-sum(x(bv))) / nbv );

endif

iter++;

until all( x >= 0)

endfunction
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Computational projection Not so simple sets

Polytope projection

Problem: minx∈P ‖x‖2, where P = co{p̂i , i ∈ I} = co{P̂}.
Rewrite as constrained QP ?

P = {x : Qx ≤ q} ? Q may have an exponential number of rows !

min ‖x‖2 s.t. x = P̂s, s ∈ ∆. ? Essential increase in the number of
unknowns. Semidefinite.

Rewrite in baricentric coordinates ?

min sP̂T P̂s s.t. s ∈ ∆.

High chances of dense P̂T P̂, not all pipj will actually be needed. May
be semidefinite.

This motivated the development of a special algorithm not unlike the
Active Set variety but with its own add-delete rules.

E.Nurminski CEP Algorithms Huawei RRI Operations Research and Mathematical Optimization Workshop Moscow, September 27-29, 2020 21 / 30



Computational projection PTP algorithm

PTP algorithm

Data: X̂ = {x̂1, x̂2, . . . , x̂N}
Result: x? ∈ X with the minimal norm
Define initial X̄ ⊂ X̂ and the least norm x̄ ∈ lin(X̄ ) such that
x̄ ∈ co(X̄ );

while There is a chance to improve x̄ do

Add some x̂ ∈ X̂ which results in decrease of distance:

min
x∈Lin(x̂ ,X̄ )

‖x‖ = ‖x s‖ < ‖x̄‖

Delete x̂ ∈ X̄ with negative baricentric coordinate.

end
Nurminski E.A. Convergence of the Suitable Affine Subspace Method . . . : Comp. Math. Math. Phys., Vol. 45 No. 11, 2005,
pp. 1915-1922.

Python and Octave codes. https://www.researchgate.net, my page.
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Computational projection PTP algorithm

Exercise in Geometry

Start from a suitable basis

O

L1

x̂1

x̂2

ΠL1
(0)

x̂3

Halfway to the next suitable basis

O

L2

x̂1

x̂2

x̂3
ΠL2

(0)

ΠL1(0)

A suitable basis for X = {x̂1, x̂2, . . . } is such subset Y ⊂ X that

min
x∈Lin(Y )

‖x‖ = min
x∈co{Y )}

‖x‖
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Computational projection Numerical performance

Run-Time Results

QP – off-the-shelf general purpose quadratic programming subroutine.

PTP – specialized polytope projection.
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Computational projection Numerical performance

PTP iterations complexity
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PTP run-time dependence on the base size, fitted with the quadratic
approximation 1.833 10−8x2 + 5.764 10−6x + 0.0097
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Application in Linear Optimization

Consider LO-problem:
min
Ax≤b

cx = cx?.

Seems everybody knew but nobody cared to proof that

x? = ΠX (x0 − θc)

for arbitrary x0 and large enough θ > 0.
Lemma. Let x?, u? are unique primal-dual solutions of the primal-dual LO
formulations of the problem above, which satisfy strict complementarity
conditions

u?(Ax? − b) = 0; u? > Ax? − b

and K ◦X (x?) is a polar cone for the feasible set X at the optimal point x?.
Then −c ∈ int(K ◦X (x?)).
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Application in Linear Optimization

Linear optimization

x2

x10 1
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x∗

−c
=
(1
0,
9)

Simplex

x2

x1

(30, 27)

x∗
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=
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0,
9)

Single-projection procedure, θ = 3
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Application in Linear Optimization

Linear optimization: polyhedrons

Traditionly
LO fesible set = {x : Ax ≤ b},

conversion to polytopes problematic if possible at all.
However it can be reduced to the cone projection:

min
z ∈ Co{Āi , i = 1, 2, . . . ,m}

‖z − a‖2

where z is (n + 1)–dimensional variable, Āi – almost i-th row of A. See

1 Nurminski E.A., Projection onto Polyhedra in Outer Representation
Computational Mathematics and Mathematical Physics, 2008, Vol.
48, No. 3, pp. 367-375.

2 Evgeni Nurminski, Replacing projection on finitely generated convex
cones with projection on bounded polytopes, arXiv:2010.12365
[math.OC], 2020.
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Decomposition

Polytope Decomposition

Data: A = {ai , i = 1, 2, . . . ,m}, and Ak ⊂ A, k = 1,K such that
A = ∪k=1,2,...,KAk .

Result: x? ∈ co{A} such that ‖x?‖ = minx∈co{A} ‖x‖
while There is a chance to improve x? do

Decompose:

min
x ∈ Conv{Ak , x

?}
‖x‖2 = ‖xk‖2, k = 1, 2, . . . ,K .

Coordinate:

min
x ∈ Conv{xk , k = 1, 2, . . . ,K}

‖x‖2 = ‖x?‖2.

end
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Decomposition

Planned developments

Nonsmooth optimization and variational inequalities:

Implementable CEP;
Skew and multiple cuts;
Low-dimensional CO.

Linear optimization:

Fine-grade, dynamic and nested decomposition;
Large-scale production applications;
Parallel computations.
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