Conjugate Epi-Projection Algorithms for Non-Smooth Optimization and Related Issues

Evgeni Nurminski
Far Eastern Federal University, Vladivostok

Huawei RRI Operations Research and Mathematical Optimization Workshop
Moscow, September 27-29, 2020

Outline

- Non-smooth optimization
- Motivations;
- The high-speed conjugate epi-projection (CEP) algorithms;
- CEP implementation;
- Projection;
- Polytopes and polyhedrons;
- Decomposition
- Linear optimization
- Ongoing and planed work.

Motivations

- Decomposition: $o b j(x)=\operatorname{subobj}_{1}(x)+\operatorname{subobj}_{2}(x)+\ldots$,

$$
\operatorname{subobj}_{i}(x) \Leftarrow \operatorname{model}_{i}(x, \ldots), i=1,2 \ldots ;
$$

- Reduction: $\min _{(x, y) \in Z} \operatorname{obj}(x, y)=\min _{x}$ reduced.obj (x),

$$
\text { reduced.obj }(x)=\min _{y \in Z(x)} \operatorname{obj}(x, y)
$$

- Data compression, automatic classification;
- Request for robustness (min max problems);
- Exact penalties, lagrangian relaxation;
- etc.

Conjugate subgradient algorithms

Descent direction is found as projection on $\operatorname{co}\left\{g^{s}, s=1,2, \ldots\right\}$:
(1) Wolfe, P.: A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions. Mathematical Programming Study, 3, 145--173 (1975)
(2) Li, Q.: Conjugate gradient type methods for the nondifferentiable convex minimization. Optimization Letters, 7(3), 533-545 (2013)
The same idea can be used for gradient methods for VI.

Convex analysis

The problem: $\min _{x} f(x), \quad f: E \rightarrow R_{\infty}$, convex.

Epigraph of a conjugate function $f^{\star}(g)=\sup _{x}\{x g-f(x)\}$.
The basic idea:

$$
f^{\star}(0)=-\min _{x} f(x)=-f_{\star}=\inf _{(0, \mu) \in \operatorname{epi} f^{\star}} \mu
$$

Conjugate Epi-Projection Algorithm

The algorithm consists of two basic operations:
(1) Projection.

$$
\min _{(\xi, g) \in \mathrm{epi} f_{\star}}\left\{\left(\xi-\xi_{k}\right)^{2}+\|g\|^{2}\right\} .
$$

(2) Support-Update.

Compute support function $v_{k}=\left(\mathrm{epi} f^{\star}\right)_{z^{k}}$ and update the approximate solution with ξ_{k+1}

$$
\xi_{k+1}=v_{k} /\left(f^{\star}\left(g_{p}^{k}\right)-\xi_{k}\right)
$$

Project

Projection of $(\xi, 0)$ onto epi f^{\star}.

Support-Update

Compute support function of epi f^{\star} :

$$
\sup _{g}\left\{x\left(z^{k} / \xi_{k}\right)-f^{\star}(g)\right\}=f\left(z^{k} / \xi_{k}\right)
$$

Major convergence results

Proved:

- If $f(x)$ is just convex the convergence is superlinear:

$$
f_{k+1}-f_{\star} \leq \lambda_{k}\left(f_{k}-f_{\star}\right), \quad \lambda_{k} \rightarrow 0 \text { when } k \rightarrow \infty
$$

- If $f(x)$ is sup-quadratic the convergence is quadratic:

$$
f_{k+1}-f_{\star} \leq \lambda\left(f_{k}-f_{\star}\right)^{2}, \quad \text { when } k \rightarrow \infty
$$

when $\lambda<f_{0}-f_{\star}$ which garantees convergence.

- If $f(x)$ has sharp minimum then convergence is finite.

In all cases convergence is global, ie does not depend on initial point.

Implementable version

Approximate epi f^{\star} with $P_{m}=\operatorname{co}\left\{z^{1}, z^{1}, \ldots, z^{m}\right\}$ and project.

Practicalities

The subproblem for projection polyhedron P_{m} can be solved by many off-the-shelf quadratic solvers, however our experience is that the specialized algorithms like

Nurminski, E.A. Convergence of the Suitable Affine Subspace Method for Finding the Least Distance to a Simplex. Computational Mathematics and Mathematical Physics, 45(11), 1915-1922 (2005)
outperforms them.
One can download the PYTHON and/or OCTAVE versions of the code as DOI: 10.13140/RG.2.2.21281.86882 from ResearchGate.

PTP algorithm

Data: $\hat{P}=\left\{\hat{p}^{1}, \hat{p}^{2}, \ldots, \hat{p}^{N}\right\}$
Result: $p^{\star} \in P=\operatorname{co}(\hat{P})$ with the minimal norm
Define initial $\bar{P} \subset \hat{P}$ and the least norm $\bar{p} \in \operatorname{lin}(\bar{P})$ such that $\bar{x} \in \operatorname{co}(\bar{P})$;
while There is a chance to improve \bar{p} do

- Add some $\hat{p} \in \hat{P}$ which results in decrease of distance:

$$
\min _{p \in \operatorname{lin}(\hat{p}, \bar{P})}\|p\|=\left\|p^{s}\right\|<\|\bar{p}\|
$$

- Delete $\hat{p} \in \bar{P}$ with negative baricentrics.
end

Run-Time Results

- QP - off-the-shelf general purpose quadratic programming subroutine.
- PTP - specialized polytope projection.

Run-time dependence on the rows-columns size of X.

PTP iterations complexity

PTP run-time dependence on the base size, fitted with the quadratic approximation $1.83310^{-8} x^{2}+5.76410^{-6} x+0.0097$

Computational experience: CONDOR v CEP

Max-quadratic function:

$$
f(x)=\max _{i=1,2}\left(x-a^{i}\right) A_{i}\left(x-a^{i}\right)
$$

with $a^{1}=(0,0,0), a^{2}=(2,3,9)$ and diagonal matrices A_{i} :
$A_{1}=\operatorname{diag}(9,4,1), A_{2}=\operatorname{diag}(1,4,9)$.

CONDOR 1.06 (NEOS)	63	0.4348696068
CEP	27	0.43673

Computational experience: RALG v CEP

Test function:

$$
f(x)=\max \left\{q_{1}(x), q_{2}(x)\right\}
$$

where:

$$
\begin{aligned}
& q_{1}(x)=x_{1}^{2} / 25+x_{2}^{2} / 4+x_{3}^{2} / 49 \\
& q_{2}(x)=\left(x_{1}-2\right)^{2}+\left(x_{2}-3\right)^{2} / 9+\left(x_{3}-1\right)^{2} / 25
\end{aligned}
$$

EPI v RALG

Foundations

Orthogonal projection (the most common):

$$
\min _{x \in X}\|x-a\|^{2}=\left\|x^{\star}(a)-a\right\|^{2}=\left\|\Pi_{X}(a)-a\right\|^{2}
$$

where $\Pi_{X}(a) \in X$.

Good news:

a) $\Pi_{X}: E \rightarrow X$ - single-valued (follows from strong convexity).
b) Lipschitz continious with the Lipschitz constant $L_{X} \leq 1$:
$\left\|\Pi_{X}(a)-\Pi_{X}(b)\right\| \leq L_{X}\|a-b\|$ for any a, b.

Not so good news:

a) It is not so rare that $L_{X}=1$ (nonexpansion) so forget about iteration algorithms.
b) Even if for X the constant $L_{X}<1$ it may be VERY close to 1 so iteration algorithm may be VERY slow.

Trivial cases

- boxes, spheres, halfspaces, linear manyfolds - closed form solutions. Problems become nontrivial for huge dimensions, and/or degenerate cases but this is another story.
- ellipsoid - reducable to 1-dimensional polynom root finding problem with good bounds for the single positive real root. Smth like $n \log (\epsilon)$ complexity bound for ϵ-accuracy.
Dual function for ellips projection $\psi(u)=\sum_{i=1}^{n} \frac{z_{i}^{2}}{a_{i}^{2}\left(1+u / a_{i}^{2}\right)^{2}}=1$

About 1 mln variables - approx 3.5 sec .

Canonical simplex

Projection problem with many applications $X=\Delta_{E}$

$$
\begin{gathered}
\min \|a-x\|^{2} . \\
x \in \Delta_{E} .
\end{gathered}
$$

The number of faces exponential in dimension n, the lowest algorithmic upper complexity bound is unknown. Algorithms with smth like $n \log (n)$ complexity:

- Michelot (C. Michelot, JOTA, 1986)
- Malozemov-Tamasyan, Comput. Math. and Math. Phys., 2016)
- and probably many others...

Michelot algorithm


```
function [ x iter ] = michelot(z, rho)
x = z;
x += (rho - sum(x)) / rows(x);
iter = 0;
do
    bv = (x > 0); nbv = sum(bv);
    if !all(bv)
                x(!bv) = 0;
                                x(bv) += ( (rho-sum(x(bv))) / nbv );
    endif
    iter++;
until all( x >= 0)
endfunction
```


Polytope projection

Problem: $\min _{x \in P}\|x\|^{2}$, where $P=\operatorname{co}\left\{\hat{p}^{i}, i \in I\right\}=\operatorname{co}\{\hat{P}\}$. Rewrite as constrained QP ?

- $P=\{x: Q x \leq q\}$? Q may have an exponential number of rows !
- $\min \|x\|^{2}$ s.t. $x=\hat{P} s, s \in \Delta$. ? Essential increase in the number of unknowns. Semidefinite.
- Rewrite in baricentric coordinates ?

$$
\min s \hat{P}^{T} \hat{P}_{s} \text { s.t. } s \in \Delta
$$

High chances of dense $\hat{P}^{T} \hat{P}$, not all $p^{i} p^{j}$ will actually be needed. May be semidefinite.
This motivated the development of a special algorithm not unlike the Active Set variety but with its own add-delete rules.

PTP algorithm

Data: $\hat{X}=\left\{\hat{x}^{1}, \hat{x}^{2}, \ldots, \hat{x}^{N}\right\}$
Result: $x^{\star} \in X$ with the minimal norm
Define initial $\bar{X} \subset \hat{X}$ and the least norm $\bar{x} \in \operatorname{lin}(\bar{X})$ such that $\bar{x} \in \operatorname{co}(\bar{X})$;
while There is a chance to improve \bar{x} do

- Add some $\hat{x} \in \hat{X}$ which results in decrease of distance:

$$
\min _{x \in \operatorname{Lin}(\hat{x}, \bar{x})}\|x\|=\left\|x^{s}\right\|<\|\bar{x}\|
$$

- Delete $\hat{x} \in \bar{X}$ with negative baricentric coordinate.

end

Nurminski E.A. Convergence of the Suitable Affine Subspace Method . . : Comp. Math. Math. Phys., Vol. 45 No. 11, 2005, pp. 1915-1922.

Python and Octave codes. https://www.researchgate.net, my page.

Exercise in Geometry

Start from a suitable basis

Halfway to the next suitable basis

A suitable basis for $X=\left\{\hat{x}^{1}, \hat{x}^{2}, \ldots\right\}$ is such subset $Y \subset X$ that

$$
\min _{x \in \operatorname{Lin}(Y)}\|x\|=\min _{x \in \operatorname{co}\{Y)\}}\|x\|
$$

Run-Time Results

- QP - off-the-shelf general purpose quadratic programming subroutine.
- PTP - specialized polytope projection.

QP and PTP runtime

Run-time dependence on the rows-columns size of X.

PTP iterations complexity

CPU time per iteration

PTP run-time dependence on the base size, fitted with the quadratic approximation $1.83310^{-8} x^{2}+5.76410^{-6} x+0.0097$

Consider LO-problem:

$$
\min _{A x \leq b} c x=c x^{\star}
$$

Seems everybody knew but nobody cared to proof that

$$
x^{\star}=\Pi_{x}\left(x^{0}-\theta c\right)
$$

for arbitrary x^{0} and large enough $\theta>0$.
Lemma. Let x^{\star}, u^{\star} are unique primal-dual solutions of the primal-dual LO formulations of the problem above, which satisfy strict complementarity conditions

$$
u^{\star}\left(A x^{\star}-b\right)=0 ; u^{\star}>A x^{\star}-b
$$

and $K_{X}^{\circ}\left(x^{\star}\right)$ is a polar cone for the feasible set X at the optimal point x^{\star}. Then $-c \in \operatorname{int}\left(K_{X}^{\circ}\left(x^{\star}\right)\right)$.

Linear optimization

Simplex

Single-projection procedure, $\theta=3$

Linear optimization: polyhedrons

Traditionly

$$
\text { LO fesible set }=\{x: A x \leq b\}
$$

conversion to polytopes problematic if possible at all. However it can be reduced to the cone projection:

$$
z \in \operatorname{Co}\left\{\bar{A}_{i}, i=1,2, \ldots, m\right\} \quad\|z-a\|^{2}
$$

where z is $(n+1)$-dimensional variable, \bar{A}_{i} - almost i-th row of A. See
(1) Nurminski E.A., Projection onto Polyhedra in Outer Representation Computational Mathematics and Mathematical Physics, 2008, Vol. 48, No. 3, pp. 367-375.
(2) Evgeni Nurminski, Replacing projection on finitely generated convex cones with projection on bounded polytopes, arXiv:2010.12365 [math.OC], 2020.

Polytope Decomposition

Data: $A=\left\{a^{i}, i=1,2, \ldots, m\right\}$, and $A_{k} \subset A, k=1, K$ such that

$$
A=\cup_{k=1,2, \ldots, K} A_{k} .
$$

Result: $x^{\star} \in \operatorname{co}\{A\}$ such that $\left\|x^{\star}\right\|=\min _{x \in \operatorname{co}\{A\}}\|x\|$
while There is a chance to improve x^{\star} do

- Decompose:

$$
\min _{x \in \operatorname{Conv}\left\{A_{k}, x^{\star}\right\}}\|x\|^{2}=\left\|x^{k}\right\|^{2}, k=1,2, \ldots, K
$$

- Coordinate:

$$
\min _{x \in \operatorname{Conv}\left\{x^{k}, k=1,2, \ldots, K\right\}}\|x\|^{2}=\left\|x^{\star}\right\|^{2}
$$

end

Planned developments

- Nonsmooth optimization and variational inequalities:
- Implementable CEP;
- Skew and multiple cuts;
- Low-dimensional CO.
- Linear optimization:
- Fine-grade, dynamic and nested decomposition;
- Large-scale production applications;
- Parallel computations.

