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Abstract. Global solvability of a boundary value problem for a generalised Boussinesq
model is proved in the case, when reaction coefficient depends nonlinearly on concentration
of substance. Solvability of control problem is proved, when the role of controls is played by
mass exchange coefficients from the boundary conditions of the model.

1. Introduction. Boundary value problem
During a long period the interest for the studying of boundary value and control problems for
linear and nonlinear heat-and-mass transfer models hasn’t waned (see [1–15]). In addition to the
search of efficient mechanisms of control of physical processes in continuous medium, the study
of control problems has also other applications. In the framework of the optimisation approach
a number of inverse problems are reduced to control ones. In particular, inverse coefficient
problems are reduced to the multiplicative control problems (see [15–19] about the correctness
of this approach).

In a current paper, while considering boundary value and extremum problems we suppose
that a reaction coefficient depends rather arbitrarily on substance’s concentration and on spatial
variable. Let us note [20, 21], where a generalisation of Oberbeck-Boussinesq approximation is
also used for different models. Let us also mention the papers [22, 23], which are dedicated to
the study of equally interesting and complicated hydrodynamical models.

In a bounded domain Ω ⊂ R3 with boundary Γ, consisting of the two parts ΓD and ΓN , the
following boundary value problem is considered:

−ν∆u + (u · ∇)u +∇p = f + βGϕ, divu = 0 in Ω, (1)

−div(λ(x)∇ϕ) + u · ∇ϕ+ k(ϕ,x)ϕ = f in Ω, (2)

u = 0 on Γ, ϕ = 0 on ΓD, λ(x)(∂ϕ/∂n+ α(x)ϕ) = χ on ΓN . (3)

Here u is a velocity vector, function ϕ represents the concentration of the pollutant, p = P/ρ,
where P is pressure, ρ = const is the fluid density, ν = const > 0 is the constant kinematic
viscosity, λ = λ(x) > 0 is the diffusion coefficient, β is the coefficient of mass expansion,
G = −(0, 0, G) is the acceleration of gravity, f and f are volume densities of external forces
or external sources of the substance, the function k = k(ϕ,x) is the reaction coefficient, where



Lavrentyev Readings on Mathematics, Mechanics and Physics

Journal of Physics: Conference Series 1666 (2020) 012045

IOP Publishing

doi:10.1088/1742-6596/1666/1/012045

2

x ∈ Ω, α = α(x) is a mass-transfer coefficient. Below we will refer to the problem (1)–(3) for
given functions f , f, λ, β, k, α and χ as Problem 1.

In this paper we prove a global solvability of Problem 1 and local uniqueness of its solution
in the case when reaction coefficient depends rather arbitrarily on substance’s concentration
ϕ and on spatial variable x ∈ Ω. Furthermore, for the considered boundary value problem a
control problem is formulated. The role of controls is played by coefficient α. Solvability of the
extremum problem is also proved or reaction coefficients of a general form. Here we will also
note the papers [24,25] on studying related models of complex heat exchange.

Below we will use the Sobolev functional spaces Hs(D), s ∈ R. Here D means either a
domain Ω or some subset Q ⊂ Ω, or a boundary Γ or its part Γ0 ⊂ Γ. By ‖ · ‖s,Q, | · |s,Q and
(·, ·)s,Q we will denote the norm, seminorm and the scalar product in Hs(Q), respectively. The
norms and the scalar product in L2(Q), L2(Ω) and L2(ΓN ) will be denoted, correspondingly,
by ‖ · ‖Q and (·, ·)Q, ‖ · ‖Ω and (·, ·)Ω, ‖ · ‖ΓN

and (·, ·)ΓN
Let Lp+(D) = {k ∈ Lp(D) : k ≥ 0},

p ≥ 3/2, Hs
λ0

(Ω) = {λ ∈ Hs(Ω) : λ ≥ λ0 > 0}, s > 3/2, L2
0(Ω) = {h ∈ L2(Ω) : (h, 1) = 0}.

By V = {v ∈ H1
0 (Ω)3 : divv = 0 in Ω}, and T = {h ∈ H1(Ω) : h|ΓD

= 0} we introduce the
main functional spaces for a velocity vector u and for concentration ϕ.

Let the following conditions hold:
(i) Ω is a bounded domain in R3 with boundary Γ ∈ C0,1, which is a union of the closure

of two disjoint open sets ΓD and of ΓN (Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅). Further, the surface
measure meas ΓD is positive, and the boundary ∂ΓD of the set ΓD consists of finitely many
closed Lipschitz curves;

(ii) λ ∈ Hs
λ0

(Ω), s>3/2, f ∈ L2(Ω)3, f ∈ L2(Ω), b = βG ∈ L2(Ω)3, χ ∈ L2(ΓN );

(iii) α ∈ L2
+(ΓN );

(iv) for any function w ∈ T , the embedding k(w, ·) ∈ Lp+(Ω) is true for some p ≥ 3/2, where
p does not depend on w; and on any sphere Br = {w ∈ T : ‖w‖1,Ω ≤ r} of radius r the following
inequality takes place:

‖k(w1, ·)− k(w2, ·)‖Lp(Ω) ≤ L‖w1 − w2‖L4(Ω) ∀w1, w2 ∈ T .

Here L is the constant, which depends on r, but does not depend on w1, w2 ∈ Br.
Let us note that the condition (iv) describes an operator, acting from T to Lp(Ω), where

p ≥ 3/2, which gives us an opportunity to take into consideration the dependence of the reaction
coefficient on either the component ϕ of the solution (u, ϕ, p) of Problem 1 or on the spatial
variable x ∈ Ω (see [13,15]).

Below we will just write k(ϕ), while emphasizing the nonlinear dependence of reaction
coefficient on the concentration.

Let us also remind that, by the Sobolev embedding theorem, the space H1(Ω) is embedded
into the space Ls(Ω) continuously at s ≤ 6 and compactly at s < 6 and, with a certain constant
Cs, depending on s and Ω, we have the estimate

‖ϕ‖Ls(Ω) ≤ Cs‖ϕ‖1,Ω ∀ϕ ∈ H1(Ω). (4)

The following technical lemma holds.
Lemma 1.1. Under the condition (i) k0 ∈ Lp+(Ω), p ≥ 3/2, u ∈ V , b ∈ L2(Ω)3, λ ∈ Hs

λ0
(Ω),

s > 3/2, α ∈ L2
+(ΓN ) there exist positive constants C0, C1, δ0, δ1, γ1, γ

′
1, γ2, γ

′
2, γ3, γp, β1, which

depend on Ω or depend on Ω and p, and there is a constant β0, which depends on ‖b‖Ω, such
that the following relations hold:

|(bh,w)| ≤ β0‖h‖1,Ω‖v‖1,Ω ∀w ∈ H1(Ω)3, h ∈ H1(Ω), (∇v,∇v) ≥ δ0‖v‖21,Ω ∀v ∈ H1
0 (Ω)3,

|((w · ∇)h, z)|≤γ′1‖w‖L4(Ω)3‖h‖1,Ω‖z‖1,Ω≤γ1‖w‖1,Ω‖h‖1,Ω‖z‖1,Ω ∀w,h, z ∈ H1(Ω)3, (5)
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((u · ∇)w,v) = −((u · ∇)w,v), ((u · ∇)v,v) = 0 ∀v,w ∈ H1(Ω)3,

sup
v∈H1

0 (Ω)3,v 6=0

−(divv, p)/‖v‖1,Ω ≥ β1‖p‖Ω ∀p ∈ L2
0(Ω),

|(u · ∇h, η)| ≤ γ′2‖u‖L4(Ω)3‖h‖1,Ω‖η‖1,Ω ≤ γ2‖u‖1,Ω‖h‖1,Ω‖η‖1,Ω ∀h, η ∈ H1(Ω);

|(k0h, η)| ≤ γp‖k0‖Lp(Ω)‖h‖1,Ω‖η‖1,Ω, (λαh, η)ΓN
≤ γ3‖λ‖s,Ω‖α‖ΓN

‖h‖1,Ω‖η‖1,Ω ∀ϕ, η ∈ H1(Ω),

(u · ∇h, h) = 0, (λ∇h,∇h) ≥ λ∗‖h‖21,Ω ∀h ∈ T , λ∗ ≡ δ1λ0.

Let us multiply the first equation in (1) by a function v ∈ H1
0 (Ω)3, the first equation in (2) by

a function h ∈ T and integrate over Ω using Green’s formulae. We obtain the weak formulation
of Problem 1:

ν(∇u,∇v) + ((u · ∇)u,v)− (p,divv) = (f ,v) + (bϕ,v) ∀v ∈ H1
0 (Ω)3, (6)

(λ∇ϕ,∇h) + (k(ϕ)ϕ, h) + (λαϕ, h)ΓN
+ (u · ∇ϕ, h) = (f, h) + (χ, h)ΓN

∀h ∈ T . (7)

The triple (u, ϕ, p) ∈ V × T × L2
0(Ω), which satisfies (6), (7), will be called a weak solution of

Problem 1.
We consider the restriction of (6) on the space V :

ν(∇u,∇v) + ((u · ∇)u,v) = (f ,v) + (bϕ,v) ∀v ∈ V. (8)

To prove the existence of a weak solution of Problem 1 it is enough to prove the existence of
a solution (u, ϕ) ∈ V × T of the problem (7), (8). About the restoration of pressure see more
in [5,14]. In its turn, the proof of the solvability of the problem (7), (8) will be constructed with
the help of the Shauder fixed-point theorem, like in [14].

The following theorem holds.
Theorem 1.1. Assume that the assumptions (i)–(iv) hold. Then there exists a weak solution

(u, ϕ, p) ∈ V × T × L2
0(Ω) of Problem 1, and the following estimates hold:

‖ϕ‖1,Ω ≤Mϕ ≡ C∗(‖f‖Ω + γ3‖χ‖ΓN
), ‖u‖1,Ω ≤Mu = ν−1

∗ (‖f‖Ω + β0Mϕ), C∗ = λ−1
∗ ,

‖p‖Ω ≤ Cp = β−1
2 [(ν + γ1Mu)Mu + ‖f‖Ω + β0Mϕ], β2 = (β1 − δ) > 0, δ > 0.

If, besides, the following conditions hold:

Re ≤ 1/2, (γp(δ0ν/β0γ2)C4L+ 2)Ra < 1,

where Re = (γ1/δ0ν)Mu and Ra = (γ2/δ0ν)(β0/δ1λ)Mϕ are dimensionless analogues of Reynolds
number and of diffusion Rayleigh number, then a weak solution of Problem 1 is unique. Here the
constants C4, γp, δ0, β0, γ2, L are defined in (4), Lemma 1.1 and condition (iii), respectively.

2. Multiplicative control problem
In this section we will study a multiplicative control problem for the system (1)–(3), in which
the role of the control is played by coefficient α. We assume that α can be changed in subset
K, which satisfy the following condition:

(j) K ⊂ L2
+(ΓN ) are a nonempty convex closed sets.

Define functional spaces X = H1
0 (Ω)3 × T × L2

0(Ω), Y = H−1(Ω)3 × T ∗ × L2
0(Ω) and

x = (u, ϕ, p) ∈ X, introduce an operator F = (F1, F2) : X ×K → Y by formulae

〈F1(x, u), (v, h)〉 = ν(∇u,∇v)+(λ∇ϕ,∇h)+((u ·∇)u,v)−(p,divv)+(k(ϕ)ϕ, h)+(u ·∇ϕ, h)+
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+(λαϕ, h)ΓN
− (f ,v)− (bϕ,v)− (f, h), 〈F2(x, u), r〉 = −(divu, r)

and rewrite a weak form (7) of Problem 1 in the form of the operator equation F (x, u) = 0.
Let I : X → R be a weakly lower semicontinuous functional. Consider the following

multiplicative control problem:

J(x, α) ≡ (µ0/2)I(x) + (µ1/2)‖α‖2ΓN
→ inf, F (x, α) = 0, (x, α) ∈ X ×K. (9)

The set of possible pairs for the problem (9) is denoted by Zad = {(x, α) ∈ X×K : F (x, α) =
0, J(x, α) <∞}. Let, in addition to (i), the following condition hold:

(jj) µ0 > 0, µ1 ≥ 0 and K is a bounded set or µi > 0, i = 0, 1 and a functional I is bounded
from below.

We use the following cost functionals:

I1(ϕ) = ‖ϕ− ϕd‖2Q, I2(ϕ) = ‖ϕ− ϕd‖21,Q, I3(u) = ‖u− ud‖2Q, I4(p) = ‖p− pd‖2Q. (10)

Here a function ϕd ∈ L2(Q) denotes a desired concentration field, which is given in a subdomain
Q ⊂ Ω. Functions ud and pd have a similar sense for either a velocity field or pressure.

Theorem 2.1. Assume that the assumptions (i), (ii), (iv) and (j), (jj) take place. Let
I : X → R be a weakly semicontinuous below functional and let Zad 6= 0. Then there is at least
one solution (x, α) ∈ X ×K of the control problem (9).

Proof. Let (xm, αm) ∈ Zad be a minimizing sequence for which the following is true:

lim
m→∞

J(xm, αm) = inf
(x,α)∈Zad

J(x, α) ≡ J∗.

From the condition (jj) and from Theorem 1.1 it can be deduced that the estimates hold:

‖αm‖ΓN
≤ c1, ‖um‖1,Ω ≤ c2, ‖ϕm‖1,Ω ≤ c3, ‖pm‖Ω ≤ c4, (11)

where the constants c1, c2, ... don’t depend on m. From the estimate (11) and from the condition
(j) it follows that there exist weak limits α∗ ∈ K, u∗ ∈ V , ϕ∗ ∈ T , p∗ ∈ L2

0(Ω) of some
subsequences of sequences {αm}, {um}, {ϕm}, {pm}, respectively. With this in mind, it can be
considered that, as m→∞, we have

pm → p∗ weakly in L2(Ω), um → u∗ weakly in H1(Ω)3 and strongly in Lp(Ω)3, p < 6,

αm → α∗ weakly in L2(ΓN ), ϕm → ϕ∗ weakly in H1(Ω) and strongly in Ls(Ω), s < 6,

ϕm|ΓN
→ ϕ∗|ΓN

weakly in L4(ΓN ) and strongly in Lq(ΓN ), q < 4. (12)

It is clear that F2(x∗, α) = 0. Let us show that F (x∗, α∗) = 0, i.e. that

ν(∇u∗,∇v) + (λ∇ϕ∗,∇h) + ((u∗ · ∇)u∗,v)− (p∗,divv) + (k(ϕ∗)ϕ∗, h)+

+(u∗ · ∇ϕ∗, h) + (λα∗ϕ∗, h)ΓN
= (f ,v) + (bϕ∗,v) + (f, h) ∀(v, h) ∈ H. (13)

Let us also remind that (xm, αm) satisfies the relation

ν(∇um,∇v) + (λ∇ϕm,∇h) + ((um · ∇)um,v)− (pm, divv) + (k(ϕm)ϕm, h)+

+(um · ∇ϕm, h) + (λαmϕm, h)ΓN
= (f ,v) + (bϕm,v) + (f, h) ∀(v, h) ∈ H1

0 (Ω)3 × T . (14)

Let us pass to the limit in (14) at m→∞. From (12) it follows that all linear terms in (14) turn
into corresponding ones in (13). Let us consider the nonlinear terms, starting with (k(ϕm)ϕm, h).
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From the condition (iii) it follows that k(ϕm) → k(ϕ∗) strongly in L3/2(Ω) as m → ∞. It’s
not hard to show that from (12) a weak convergence ϕmh→ ϕ∗h in L3(Ω) for all h ∈ T follows.
Then k(ϕm)ϕmh→ k(ϕ∗)ϕ∗h strongly in L1(Ω) as m→∞ or

|(k(ϕm)ϕm, h)− (k(ϕ∗)ϕ∗, h)| → 0 as m→∞ ∀h ∈ T .

It is clear, that ((um·∇)um,v)−((u∗·∇)u∗,v) = (((um−u∗)·∇)um,v)+((u∗·∇)(um−u∗),v).
By (12), using Lemma 1.1 and (11), we obtain that

|(((um − u∗) · ∇)um,v)| ≤ γ′1‖um − u∗‖L4(Ω)3‖um‖1,Ω‖v‖1,Ω → 0 as m→∞.

Using (5), we deduce that

|((u∗ · ∇)v,um − u∗)| ≤ γ′1‖u∗‖1,Ω‖v‖1,Ω‖um − u∗‖L4(Ω)3 → 0 as m→∞.

For a nonlinear term (um · ∇ϕm, h) in (14), the equality holds

(um · ∇ϕm, h)− (u∗ · ∇ϕ∗, h) = ((um − u∗) · ∇ϕm, h) + (u∗ · ∇(ϕm − ϕ∗), h).

From (12), using Lemma 2.1 and (11), we arrive at

|((um − u∗) · ∇ϕm, h)| ≤ γ′2‖um − u∗‖L4(Ω)3‖ϕm‖1,Ω‖h‖1,Ω → 0 as m→∞.

As u∗h ∈ L3(Ω)3, then from (12) it follows that

(u∗ · ∇(ϕm − ϕ∗), h) = (∇(ϕm − ϕ∗), hu∗)→ 0 as m→∞ ∀h ∈ T .

For a nonlinear term (λαmϕm, h)ΓN
we have that

(λαmϕm, h)ΓN
− (λα∗ϕ∗, h)ΓN

= (λαm(ϕm − ϕ∗), h)ΓN
+ (αm − α, λϕ∗h)ΓN

. (15)

As λϕ∗h ∈ L2(ΓN ), then for the second term in right-hand side of (15) we have

(αm − α∗, λ∗ϕ∗h)ΓN
→ 0 as m→∞ ∀h ∈ T .

Since C∞(Ω) is dense in T , there exists a sequence hn ∈ C∞(Ω), converging to h as n→∞
by the norm ‖ · ‖1,Ω. With the help of {hn} we have

(λαm(ϕm − ϕ∗), h)ΓN
= (λαm(ϕm − ϕ∗), hn)ΓN

+ (λαm(ϕm − ϕ∗), h− hn)ΓN
∀m,n ∈ N. (16)

By the uniform boundedness over m of the quantities ‖αm‖ΓN
and ‖ϕm−ϕ∗‖L4(Ω), there exists

a number N = N(ε, h), such that the second term in (16) satisfies as n ≥ N , m ∈ N

|(λ∗αm(ϕm − ϕ∗), h− hn)ΓN
| ≤ ‖λ∗‖L∞(Ω)‖αm‖ΓN

‖ϕm − ϕ∗‖L4(Ω)‖hn − h‖L4(Ω) ≤ ε/2. (17)

By the uniform boundedness over m of the quantity ‖αm‖L2(ΓN ) and convergence of
‖ϕm − ϕ∗‖L3(ΓN ) there exists a number M = M(ε, h), such that the first term in (17) satisfies

|(λαm(ϕm − ϕ∗), hn)ΓN
| ≤ ‖λ∗‖L∞(Ω)‖αm‖ΓN

‖ϕm − ϕ∗‖L3(Ω)‖hn‖L6(Ω) ≤ ε/2, m ≥M, n ∈ N.
(18)

Then form (17) and (18) it follows that |(λ∗αm(ϕm − ϕ∗), h)ΓN
| → 0 as m→∞ ∀h ∈ T .

As the functional J is weakly semicontinuous below on X×L2(ΓN ), then from (11) it follows
that J(x∗, α∗) = J∗.

Remark 2.1. It is clear, that all cost functionals from (10) satisfy the conditions of the
Theorem 2.1.

In subsequent papers, optimality systems will be derived for the control problem (9). Based
on their analysis questions of uniqueness and stability of optimal solutions will be studied and
numerical algorithms for solving control problems will be constructed.
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