S@MR

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 17, стр. 726–731 (2020) DOI 10.33048/semi.2020.17.050 UDC 510.67, 512.56 MSC 18D35

STABILITY OF THE CLASS OF DIVISIBLE S-ACTS

A.I. KRASITSKAYA

ABSTRACT. We describe monoids S such that the theory of the class of all divisible S-acts is stable, superstable or, for commutative monoid, ω stable. More precisely, we prove that the theory of the class of all divisible S-acts is stable (superstable) iff S is a linearly ordered (well ordered) monoid. We also prove that for a commutative monoid S the theory of the class of all divisible S-acts is ω -stable iff S is either an abelian group with at most countable number of subgroups or is finite and has only one proper ideal. Classes of regular, projective and strongly flat S-acts were considered in [1, 2]. Using results from [3] we obtain necessary and sufficient conditions for stability, superstability and ω -stability of theories of classes of all divisible S-acts.

Keywords: monoid, divisible S-act, stability, superstability, ω -stability.

1. Preliminaries

Let us recall some definitions and facts from the theory of S-acts [4]. Let S be a monoid, i.e. a semigroup with the unit element 1. A monoid S is called *linearly* (well) ordered, if the set $\{Sa \mid a \in S\}$ is linearly ordered (well ordered) by \supseteq . An element $c \in S$ is said to be right cancellable if for all $a, b \in S$ the equality ac = bcimplies that a = b. An element $s \in S$ is called right invertible if there exists an element $t \in S$ such that st = 1.

A (*left*) S-act $_{S}A$ over a monoid S is a set A, on which an action of S is defined and the unit element of S acts on A as identity. By S-Act we denote the class of all S-acts.

Remark 1. If t is a right invertible element of S and ${}_{S}A$ is an S-act, then tA = A.

Krasitskaya, A.I., Stability of the class of divisible S-acts.

^{© 2020} Krasitskaya A.I.

This research was partially supported by Ministry of Education and Science of the Russian Federation, contract N075-02-2020-1482-1, 21.04.2020.

Received April 6, 2019, published May 27, 2019.

A congruence on an S-act ${}_{S}A$ is an equivalence relation ρ on A such that $(a, a') \in \rho$ implies $(sa, sa') \in \rho$ for all $a, a' \in A$, $s \in S$. The smallest congruence on the S-act ${}_{S}A$ with respect to \subseteq which contains a set X is called a congruence of the S-act ${}_{S}A$, generated by X, and is denoted by $\rho(X)$. Denote by a/ρ the class of a congruence ρ with a representative $a \in A$.

We say that an element $a \in A$ is *divisible* by $s \in S$ in ${}_{S}A$, if there exists $b \in A$ such that sb = a. A *divisible* S-act is an S-act ${}_{S}A$, such that cA = A for every right cancellable element $c \in S$. We use S-Div to denote the class of all divisible S-acts. It is clear that S-Div is an elementary class.

By the coproduct of S-acts ${}_{S}A_{i}$, $i \in I$, we mean their disjoint union. The coproduct of S-acts ${}_{S}A_{i}$, $i \in I$, is denoted by $\coprod_{i \in I} {}_{S}A_{i}$. Note that a coproduct of divisible S-acts is also a divisible S-act. A map $\theta : A \to B$ such that $\theta(sa) = s\theta(a)$ for all $a \in A, s \in S$, is called an S-morphism from the S-act A to the S-act B. An S-act F is said to be free in S-Act (with a set of free generators X) if for every S-act A and every map $\theta : X \to A$ there exists a unique S-morphism $\overline{\theta} : F \to A$ such that $\iota \overline{\theta} = \theta$, where $\iota : X \to F$ is an embedding.

Let T be the set of all right cancellable but not right invertible elements of S. Let ${}_{S}A$ be an S-act, $X = \{(t,a) \in T \times A \mid a \text{ is not divisible by } t\}$, ${}_{S}F(X)$ be a free S-act with a set of free generators X, $H = \{(t(t,a),a) \mid (t,a) \in X, a \in A\} \subseteq (F(X) \coprod A) \times (F(X) \coprod A)$, $\rho(H)$ be a congruence of the S-act ${}_{S}(F(X) \coprod A)$, generated by H, ${}_{S}U(T,A) = {}_{S}(F(X) \coprod A)/\rho(H)$. Note that there exists a natural embedding $\pi : A \to U(T, A)$. Therefore we can identify elements $a \in A$ with $\pi(a)$.

We introduce the following notations: ${}_{S}A_{0} = {}_{S}A, {}_{S}A_{i} = {}_{S}U(T, A_{i-1})$ for $i \in \mathbb{N}$, $D(A) = \bigcup_{i \in \omega} A_{i}$.

Fact 1. [4] The S-act $_{S}D(A)$ is divisible.

The S-act $_{S}D(A)$ is called the *divisible extension* of the S-act $_{S}A$.

Fact 2. [5] Let $_{S}A$ be an S-act, $a, b \in A$, $d \in D(A) \setminus A$, $a, b \in Sd$. Then $a, b \in Sc$ for some $c \in A$.

The following facts from model theory can be found in [6, 7]. Let T be a consistent theory in a language L, $X = \{x_i \mid 1 \le i \le n\}$, $L_n = L_X$. Every set p of sentences of a language L_n is called an n-type of L. If a theory $p \cup T$ is consistent, then p is said to be an n-type over T. If p is a complete theory, **then** p is called a *complete* n-type of L. If also $T \subseteq p$, we say that p is a full n-type over T. The set of all complete n-types over T is denoted by $S_n(T)$.

Let \mathcal{A} be an algebraic system of a language $L, X \subseteq A$, and $a \in A$. The type of an element a over the set X is the set $tp(a, X) = \{\Phi(x) \mid \mathcal{A}_X \models \Phi(a)\}$. It is easy to see that tp(a, X) is a complete 1-type over $Th(\mathcal{A}_X)$. Denote $S_1(Th(\mathcal{A}_X))$ by S(X).

A theory T is called *stable for the cardinality* κ or κ -stable, if $|S(X)| \leq \kappa$ for every model \mathcal{A} of a theory T and every $X \subseteq A$ of cardinality κ . If a theory T is κ -stable for some infinite κ then T is called *stable*. If a theory T is κ -stable for every $\kappa \geq 2^{|T|}$, then T is said to be *superstable*. If a theory T is not stable, then T is called *unstable*.

Fact 3. [1] A complete theory is unstable iff there exists a formula $\Phi(\bar{x}, \bar{y})$ with 2n variables, a model \mathcal{A} of a theory T and $\bar{a}_i \in A^n$, $i \in \omega$, such that for every $i, j, i \neq j$,

$$i < j \iff \mathcal{A} \models \Phi(\bar{a}_i, \bar{a}_j).$$

Let K be a class of S-acts. A monoid S is called a K-stabiliser (K-superstabiliser, K- ω -stabiliser), if $Th(_{S}A)$ is stable (superstable, ω -stable) for every S-act $_{S}A \in K$. If K = S-Act, then K-stabiliser (K-superstabiliser, K- ω -stabiliser) is called the stabiliser (superstabiliser, ω -superstabiliser).

Let us introduce the following notation:

$$\exists^{n} y \phi(x, y) \leftrightarrows \exists y_{1} \dots \exists y_{n} (\bigwedge_{1 \leq i < j \leq n} \neg (y_{i} = y_{j}) \land \bigwedge_{1 \leq i \leq n} \phi(x, y_{i}) \land \land \forall y (\phi(x, y) \to \bigvee_{1 \leq i \leq n} y = y_{i})).$$

Fact 4. [3] A monoid S is a stabiliser iff S is a linearly ordered monoid.

Fact 5. [3] A monoid S is a superstabiliser iff S is a well ordered monoid.

Fact 6. [7] If a theory T is stable for a countable cardinality (ω -stable), then it is stable for all infinite cardinalities.

Fact 7. [8] Let S be an arbitrary countable commutative monoid. Then the following statements are equivalent:

1) S is an ω -stabliser:

2) Either S is an abelian group with at most countable number of subgroups, or S is finite and has a unique proper ideal.

2. Stability of the S-Div class

Theorem 1. Given a monoid S, the following statements are equivalent:

- 1) S is a S-Div-stabiliser;
- 2) S is a stabiliser:

3) S is a linearly ordered monoid.

Proof. The implication $2 \Rightarrow 1$ is trivial.

The implication $2 \Leftrightarrow 3$ follows from Fact 4.

Let us prove $1 \Rightarrow 3$.

Assume that S is a S-Div-stabiliser but not a linearly ordered monoid, i.e. there exist $t, s \in S$ such that $St \not\subseteq Ss$ and $Ss \not\subseteq St$. Let $K = \{\langle i, j \rangle \mid j \leq i < \omega\}; {}_{S}S_{ij}$ – a copy of an S-act $_{S}S(\langle i,j\rangle \in K)$ and $Si \not \in Si$. Let $K = (\langle i,j\rangle + j < i < \omega \}$, Sija copy of an S-act $_{S}S(\langle i,j\rangle \in K)$ and $Si_{ij} \cap S_{kl} = \emptyset$, if $\langle i,j\rangle \neq \langle k,l\rangle$; d_{ij} is a copy of $d \in S$ in S_{ij} . Let $_{S}A$ be an S-act $\bigcup_{\langle i,j\rangle \in K} _{S}S_{ij}/\theta$, where θ is a congruence of the S-act $\bigcup_{\langle i,j\rangle \in K} _{S}S_{ij}$, generated by the set $\{\langle t_{ij}, t_{il}\rangle \mid \langle i,j\rangle \in K, \langle i,l\rangle \in K\} \cup \{\langle s_{ij}, s_{lj}\rangle \mid Q \in S_{ij}\}$

 $\langle i,j\rangle, \langle l,j\rangle \in K$; let t_i be an equivalence class of θ with a representative t_{ij} ; let s_i be an equivalence class of θ with a representative s_{ij} ; let $\varphi(x, y)$ be a formula $\exists z(x = tz \land y = sz)$. It is clear that the restriction of θ on the S-act ${}_{S}A_{ij}$ ($\langle i, j \rangle \in K$) is a zero-congruence.

Let us prove that

 $_{S}D(A) \models \varphi(t_i, s_j) \iff i \ge j.$ (1)

If $i \ge j$, then $t_i = t \mathbb{1}_{ij}/\theta$ and $s_i = s \mathbb{1}_{ij}/\theta$, i.e. ${}_{S}D(A) \models \varphi(t_i, s_j)$. Let i < j. Assume that $t_i = tu$ and $s_j = su$ for some $u \in D(A)$. Then Fact 2 implies that $t_i, s_j \in Sc/\theta$ for some $c/\theta \in A$, which is not true.

From Fact 3 it follows that (1) contradicts the stability of $Th(_{S}D(A))$. Therefore S is a linearly ordered monoid. \square

728

Theorem 2. Given a monoid S, the following statements are equivalent:

- (1) S is a S-Div-superstabiliser;
- (2) S is a superstabiliser;
- (3) S is a well ordered monoid.

Proof. The implication $2 \Rightarrow 1$ is trivial.

The implication $2 \Leftrightarrow 3$ follows from Fact 5.

Let us prove $1 \Rightarrow 3$.

Let S be a S-Div-superstabiliser. Then S is a S-Div-stabiliser and from Theorem 1 it is linearly ordered. We want to show that S is a well ordered monoid. Assume the contrary, i.e. there exist $a_i \in S$ such that $Sa_i \subset Sa_{i+1}$ $(i \in \omega)$. Let T be a theory S-Div, κ a cardinal number, such that $\kappa \ge 2^{|T|}$. For $\eta \in \kappa^{\omega}$, we denote copies of an S-act by ${}_{S}S_{\eta}$ and copies of elements $c \in S$ by $c_{\eta} \in S_{\eta}$. Let $\eta | 0 = \emptyset$, $\eta | i = (\eta(0), \eta(1), \ldots, \eta(i-1))$, where $i \in \omega \setminus \{0\}$.

Let ${}_{S}A = \bigsqcup_{\eta \in \kappa^{\omega}} {}_{S}S_{\eta}/\Theta$, where Θ is a congruence of the S-act $\bigsqcup_{\eta \in \kappa^{\omega}} {}_{S}S_{\eta}$ generated by the set $\{((a_{i})_{\eta}, (a_{i})_{\varepsilon}) \mid \eta, \varepsilon \in \kappa^{\omega}, \eta | i = \varepsilon | i \}, \ b_{\eta | i} = (a_{i})_{\eta}/\Theta, \ b_{\eta} = 1_{\eta}/\Theta$, where $\eta \in \kappa^{\omega}, B = \{b_{\eta | i} \mid \eta \in \kappa^{\omega}, i \in \omega\}$. It is clear that $|b_{\eta}| = 1$ for every $\eta \in \kappa^{\omega}$ and $|B| = \kappa^{\omega}$. Let $\eta, \varepsilon \in \kappa^{\omega}, \eta \neq \varepsilon$. We show that $tp(b_{\eta}, B)$ and $tp(b_{\varepsilon}, B)$ are distinct 1-types over a theory $Th(D(_{S}A))$. Since $\eta \neq \varepsilon$, it follows that $\eta | i \neq \varepsilon | i$ for some $i \in \omega$ and $b_{\eta | i} \neq b_{\varepsilon | i}$. Furthermore, $b_{\eta | i} = a_{i}b_{\eta}$ and $b_{\varepsilon | i} = a_{i}b_{\varepsilon}$. Then $b_{\eta | i} = a_{i}x \in tp(b_{\eta}, B) \setminus tp(b_{\varepsilon}, B)$. Consequently, $|S(B)| \ge |\{b_{\eta} \mid \eta \in \kappa^{\omega}\}| = \kappa^{\omega} > \kappa$ and it follows that the theory $Th(D(_{S}A))$ is not superstable. This implies that monoid S is not a S-Div-superstabiliser δ and with that we obtain a contradiction. Therefore, S is a well ordered monoid. \Box

4. ω -stability of the *S*-*Div* class

Theorem 3. Given a commutative countable monoid S, the following statements are equivalent:

(1) S is a S-Div- ω -superstabiliser;

(2) S is an ω -stabiliser;

(3) Either S is an abelian group with at most countable number of subgroups or S is finite and has a unique proper ideal.

Proof. Let S be a commutative countable monoid.

The implication $2 \Rightarrow 1$ is trivial.

The implication $2 \Leftrightarrow 3$ follows from Fact 7.

We shall prove that $1 \Rightarrow 3$.

For a proof assume that S is a $S - Div - \omega$ -stabiliser. Then Fact 6. implies that S is a S - Div-superstabiliser and from theorem 2 we obtain that S is a well ordered monoid.

If S contains no cancellable and non-invertible elements then by definition of divisible S-acts it follows that S - Div = S - Act. Then S is an ω -stabiliser.

Assume that such element exists in S. Since S is a well ordered monoid, there exists a cancellable and non-invertible element $g \in S$ such that

(2) $\forall a \in S(Sg \subset Sa \Rightarrow a \text{ is non-cancellable or invertible}).$

We denote $1 \in S$ by g^0 .

Consider an element $i \in \omega$. We will show that

(3)
$$\forall a \in S(Sg^{i+1} \subset Sa \subseteq Sg^i \Rightarrow Sa = Sg^i).$$

Assume that $Sg^{i+1} \subset Sa \subseteq Sg^i$. Then $a = sg^i$ and $s \notin Sg$. Since S is linearly ordered, we have that $Sg \subset Ss$ and g = ts for some $t \in S$. From (2) it follows that s is either non-cancellable or invertible. Let us check that s is a cancellable element of S. Indeed, if xs = ys for some $x, y \in S$, then xts = yts, i.e. xg = yg and x = y.

Therefore, s is invertible and Ss = S. Hence $Sa = Ssg^i = Sg^i$ and (3) is proved. We will now show that $Sg^{i+1} \subset Sg^i$. Assume that $Sg^i = Sg^{i+1}$. Then $g^i = sg^{i+1}$ for some $s \in S$. Since g is cancellable, it follows that 1 = sg. This contradicts the fact that q is not invertible.

Consider elements $s, t \in S$. We shall prove that

(4)
$$s \in Sg^i \setminus Sg^{i+1} \land t \in Sg^j \setminus Sg^{j+1} \Longrightarrow st \in Sg^{i+j} \setminus Sg^{i+j+1}.$$

Let $s \in Sg^i \setminus Sg^{i+1}$, $t \in Sg^j \setminus Sg^{j+1}$. As $s \in Sg^i$, then $s = s_1g^i$ for some $s_1 \in S$. Since $t \in Sg^j$, it follows that $t = t_1g^j$ for some $t_1 \in S$. Then $st = s_1t_1g^{i+j} \in Sg^{i+j}$. Because $s \notin Sg^{i+j}$, we obtain that $s_1 \notin Sg$; also $t \notin Sg^{i+j}$, implies that $t_1 \notin Sg$. Furthermore since S is linearly ordered we have that $Sg \subset Ss_1, Sg \subset St_1$ and from (3), we derive that $Ss_1 = S$ and $St_1 = S$. Assume $st \in Sg^{i+j+1}$, i.e. $st = rg^{i+j+1}$ for some $r \in S$. Then $rg^{i+j+1} = s_1 t_1 g^{i+j}$. From the fact that g is cancellable we see that $rg = s_1t_1$. Thus, $s_1t_1 \in Sg$, i.e. $S = Ss_1t_1 \subseteq Sg$, which is a contradiction. Hence $st \in Sg^{i+j} \setminus Sg^{i+j+1}$.

Let \sim be the following relation on the set S:

$$a \sim b \iff \exists i \in \omega : a, b \in Sg^i \setminus Sg^{i+1}.$$

It is easy to show that \sim is an equivalence relation. Let us prove that \sim is also a congruence of the S-act _SS. Consider elements $a, b, s \in S$, such that $s \in Sg^i \setminus Sg^{i+1}$, where $i \in \omega$, and $a \sim b$. We want to show that $sa \sim sb$. Since $a \sim b$, it follows that $a, b \in Sg^j \setminus Sg^{j+1}$ for some $j \in \omega$. From (4), we obtain that $sa, sb \in Sg^{i+j} \setminus Sg^{i+j+1}$, i.e. $sa \sim sb$.

Consider ${}_{S}\bar{S} = {}_{S}S/_{\sim} ({}_{S}\bar{S}$ is an S-act). For $a \in S$ denote by \bar{a} a congruence class of ~ with a representative a. Then (3) yields that $\bar{S} = \{\bar{g}^i \mid i \in \omega\}$.

Define the action of the S-act S on the set $A = \{\bar{q}^n \mid n \in \mathbb{Z}\}$. Let $s \in S$. Then $s \sim g^k$ for some $k \in \omega$. Assume that $s\bar{g}^n = \bar{g}^{n+k}$ for every $n \in \mathbb{Z}$. We will prove that $s(t\bar{g}^n) = (st)\bar{g}^n$ for every $s, t \in S, n \in \mathbb{Z}$. Consider elements $s \sim g^k, t \sim g^m$. From (4) we have $st \sim g^{m+k}$. By definition of the action of the monoid S on the set A, we have that $(st)\overline{g}^n = \overline{g}^{n+m+k}$, $t\overline{g}^n = \overline{g}^{m+n}$ and $s(t\overline{g}^n) = s\overline{g}^{m+n} = \overline{g}^{k+m+n}$. Hence ${}_{S}A$ is an S-act. Note that ${}_{S}\overline{S}$ is a sub-S-act of ${}_{S}A$.

We will see that ${}_{S}A \in S$ -Div. Let t be a cancellable element of S. We want to check that tA = A. By Remark 1. it can be assumed that t is not invertible. Let $\bar{g}^n \in A$ u $t \sim g^i$. Then $\bar{g}^n = t\bar{g}^{n-i} \in tA$. Therefore tA = A.

We will now show that a theory Th(SA) is not ω -stable. Let SA_i $(i \in \mathbb{N})$ be copies of the S-act $_{S}A$, and $a_{i} \in A_{i}$ be copies of an element $a \in A$. We assign to every $n \in \mathbb{N}$ an S-act ${}_{S}A^{n} = \bigsqcup_{i \leq n} {}_{S}A_{i}/\Theta^{n}$, where Θ^{n} is a congruence of an S-act

 $\bigsqcup_{i \leq n} {}_{S}A_i \text{ generated by the set } \{ \overline{g}_i^{-2} \mid i \leq n \}. \text{ Note that for } m \geq -2 \text{ elements } \overline{g}_1^m / \Theta^n$ $_{i\leq n}^{i\leq n}$, $, \bar{g}_n^m/\Theta^n$ are the same. Denote by $(g^m)_n$ an element \bar{g}_i^m/Θ^n $(m \geq -2)$. To each $K \subseteq \mathbb{N}$ we assign an S-act $_SA^K = \bigsqcup_{n \in K} {}_SA_n/\eta^K$, where η^K is a congruence of

730

an S-act $\bigsqcup_{n \in K} {}_{S}A_{n}$ generated by the set $\{(\bar{g}^{-1})_{n} \mid n \in K\}$. Note that for $m \geq -1$ elements $(a^{m})_{k} / n^{K}$ $n \in K$ coincide Denote an element $(a^{m})_{k} / n^{K}$ by $(a^{m})_{K}$

elements $(g^m)_n/\eta^K$, $n \in K$, coincide. Denote an element $(g^m)_n/\eta^K$ by $(g^m)_K$. Let ${}_{S}B = \bigsqcup_{K \subseteq \mathbb{N}} {}_{S}A^K/\xi$, where ξ is a congruence of an S-act $\bigsqcup_{K \subseteq \mathbb{N}} A^K$ generated by the set $\{ (g^0)_K \mid K \subseteq \mathbb{N} \}$. Note that for $m \ge 0$ elements $(g^m)_K/\xi$, $K \subseteq \omega$, coincide. For $m \ge 0$, we will denote element $(g^m)_K/\xi$ by g^m . For every $n \in \mathbb{N}$, we define:

$$\varphi_n(y) \leftrightarrows \exists^n z(gz = y).$$

Let $K_1 \neq K_2$. We want to check that $tp((g^{-1})_{K_1}, \emptyset) \neq tp((g^{-1})_{K_2}, \emptyset)$. Assume there exists n such that $n \in K_1 \setminus K_2$. Then

$${}_{S}D(B) \models \varphi_n((g^{-1})_{K_1}) \land \neg \varphi_n((g^{-1})_{K_2}).$$

Hence, $|S(\emptyset)| \ge 2^{\mathbb{N}}$ and a theory $Th(_{S}D(B))$ is not ω -stable. Therefore, a monoid S is not a $Div-\omega$ -stabiliser.

References

- A.V. Mikhalev, E.V. Ovchinnikova, E.A. Palyutin, A.A. Stepanova, Model theoretic properties of regular polygons, J. Math. Sci. (N.Y.), 140:2 (2007), 250–285. MR2142512
- [2] V. Gould, A.V. Mikhalev, E.A. Palyutin, A.A. Stepanova, Model theoretic properties of free, projective, and flat S-acts, J. Math. Sci. New York, 164:2 (2010), 195-227. Zbl 1288.03026
- [3] T.G. Mustafin, On stability theory of polygons, Trudy Inst. Mat., 8 (1988), 92–108. Zbl 0725.03019
- [4] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories, Walter De Gruyter, Berlin, 2000. Zbl 0945.20036
- [5] A.I. Krasitskaya, A.A. Stepanova, Primitive normality and primitive connection of divisible acts, Algebra and Logic, given to the press.
- [6] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, Moscow: Fizmathlit, 2011. Zbl 0632.03001
- [7] C.C. Chang, H.J. Keisler, Model theory, Elsevier, New York, 1973. Zbl 0276.02032
- [8] V.S. Bogomolov, T.G. Mustafin, Description of commutative monoids over which all polygons are W-stable, Algebra and Logic, New York, 28:4 (1989), 239-247. Zbl 0704.03018

Anastasia Igorevna Krasitskaya Far Eastern Federal University, 8, Sukhanova str., Vladivostok, 690090, Russia *E-mail address*: stasyakras@gmail.com