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STABILITY OF THE CLASS OF DIVISIBLE S-ACTS

A.I. KRASITSKAYA

Abstract. We describe monoids S such that the theory of the class of
all divisible S-acts is stable, superstable or, for commutative monoid, ω-
stable. More precisely, we prove that the theory of the class of all divisible
S-acts is stable (superstable) iff S is a linearly ordered (well ordered)
monoid. We also prove that for a commutative monoid S the theory of
the class of all divisible S-acts is ω-stable iff S is either an abelian group
with at most countable number of subgroups or is finite and has only
one proper ideal. Classes of regular, projective and strongly flat S-acts
were considered in [1, 2]. Using results from [3] we obtain necessary and
sufficient conditions for stability, superstability and ω-stability of theories
of classes of all divisible S-acts.
Keywords: monoid, divisible S-act, stability, superstability, ω-stability.

1. Preliminaries

Let us recall some definitions and facts from the theory of S-acts [4]. Let S be
a monoid, i.e. a semigroup with the unit element 1. A monoid S is called linearly
(well) ordered, if the set {Sa | a ∈ S} is linearly ordered (well ordered) by ⊇. An
element c ∈ S is said to be right cancellable if for all a, b ∈ S the equality ac = bc
implies that a = b. An element s ∈ S is called right invertible if there exists an
element t ∈ S such that st = 1.

A (left) S-act SA over a monoid S is a set A, on which an action of S is defined
and the unit element of S acts on A as identity. By S-Act we denote the class of
all S-acts.

Remark 1. If t is a right invertible element of S and SA is an S-act, then
tA = A.
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A congruence on an S-act SA is an equivalence relation ρ on A such that (a, a′) ∈
ρ implies (sa, sa′) ∈ ρ for all a, a′ ∈ A, s ∈ S. The smallest congruence on the S-act
SA with respect to ⊆ which contains a set X is called a congruence of the S-act SA,
generated by X, and is denoted by ρ(X). Denote by a/ρ the class of a congruence
ρ with a representative a ∈ A.

We say that an element a ∈ A is divisible by s ∈ S in SA, if there exists b ∈ A
such that sb = a. A divisible S-act is an S-act SA, such that cA = A for every right
cancellable element c ∈ S. We use S-Div to denote the class of all divisible S-acts.
It is clear that S-Div is an elementary class.

By the coproduct of S-acts SAi, i ∈ I, we mean their disjoint union. The
coproduct of S-acts SAi, i ∈ I, is denoted by

⨿
i∈I

SAi. Note that a coproduct of

divisible S-acts is also a divisible S-act. A map θ : A → B such that θ(sa) = sθ(a)
for all a ∈ A, s ∈ S, is called an S-morphism from the S-act A to the S-act B. An
S-act F is said to be free in S-Act (with a set of free generators X) if for every
S-act A and every map θ : X → A there exists a unique S-morphism θ̄ : F → A
such that ιθ̄ = θ, where ι : X → F is an embedding.

Let T be the set of all right cancellable but not right invertible elements of
S. Let SA be an S-act, X = {(t, a) ∈ T × A | a is not divisible by t}, SF (X)
be a free S-act with a set of free generators X, H = {(t(t, a), a)|(t, a) ∈ X, a ∈
A} ⊆ (F (X)

⨿
A)× (F (X)

⨿
A), ρ(H) be a congruence of the S-act S(F (X)

⨿
A),

generated by H, SU(T,A) =S (F (X)
⨿

A)/ρ(H). Note that there exists a natural
embedding π : A → U(T,A). Therefore we can identify elements a ∈ A with π(a).

We introduce the following notations: SA0 =S A, SAi =S U(T,Ai−1) for i ∈ N,
D(A) =

∪
i∈ω Ai.

Fact 1. [4] The S-act SD(A) is divisible.

The S-act SD(A) is called the divisble extension of the S-act SA.

Fact 2. [5] Let SA be an S-act, a, b ∈ A, d ∈ D(A)\A, a, b ∈ Sd. Then a, b ∈ Sc
for some c ∈ A.

The following facts from model theory can be found in [6, 7]. Let T be a consistent
theory in a language L, X = {xi | 1 ≤ i ≤ n}, Ln = LX . Every set p of sentences
of a language Ln is called an n–type of L. If a theory p ∪ T is consistent, then p is
said to be an n–type over T . If p is a complete theory, then p is called a complete
n–type of L. If also T ⊆ p, we say that p is a full n–type over T . The set of all
complete n–types over T is denoted by Sn(T ).

Let A be an algebraic system of a language L, X ⊆ A, and a ∈ A. The type of
an element a over the set X is the set tp(a,X) = {Φ(x) | AX |= Φ(a)}. It is easy to
see that tp(a,X) is a complete 1–type over Th(AX). Denote S1(Th(AX)) by S(X).

A theory T is called stable for the cardinality κ or κ–stable, if |S(X)| ≤ κ for
every model A of a theory T and every X ⊆ A of cardinality κ. If a theory T is
κ–stable for some infinite κ then T is called stable. If a theory T is κ–stable for
every κ ≥ 2|T |, then T is said to be superstable. If a theory T is not stable, then T
is called unstable.

Fact 3. [1] A complete theory is unstable iff there exists a formula Φ(x̄, ȳ) with
2n variables, a model A of a theory T and āi ∈ An, i ∈ ω, such that for every
i, j, i ̸= j,

i < j ⇐⇒ A |= Φ(āi, āj).
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Let K be a class of S-acts. A monoid S is called a K-stabiliser (K-superstabiliser,
K-ω-stabiliser), if Th(SA) is stable (superstable, ω-stable) for every S-act SA ∈ K.
If K = S-Act, then K-stabiliser (K-superstabiliser, K-ω-stabiliser) is called the
stabiliser (superstabiliser, ω-superstabiliser).

Let us introduce the following notation:

∃nyϕ(x, y) � ∃y1 . . .∃yn(
∧

1≤i<j≤n

¬(yi = yj) ∧
∧

1≤i≤n

ϕ(x, yi)∧

∧ ∀y(ϕ(x, y) →
∨

1≤i≤n

y = yi)).

Fact 4. [3] A monoid S is a stabiliser iff S is a linearly ordered monoid.

Fact 5. [3] A monoid S is a superstabiliser iff S is a well ordered monoid.

Fact 6. [7] If a theory T is stable for a countable cardinality (ω-stable), then it is
stable for all infinite cardinalities.

Fact 7. [8] Let S be an arbitrary countable commutative monoid. Then the following
statements are equivalent:

1) S is an ω-stabliser;
2) Either S is an abelian group with at most countable number of subgroups, or

S is finite and has a unique proper ideal.

2. Stability of the S-Div class

Theorem 1. Given a monoid S, the following statements are equivalent:
1) S is a S-Div-stabiliser;
2) S is a stabiliser;
3) S is a linearly ordered monoid.

Proof. The implication 2 ⇒ 1 is trivial.
The implication 2 ⇔ 3 follows from Fact 4.
Let us prove 1 ⇒ 3.
Assume that S is a S-Div-stabiliser but not a linearly ordered monoid, i.e. there

exist t, s ∈ S such that St ̸⊆ Ss and Ss ̸⊆ St. Let K = {⟨i, j⟩ | j 6 i < ω}; SSij –
a copy of an S-act SS (⟨i, j⟩ ∈ K) and Sij ∩ Skl = ∅, if ⟨i, j⟩ ̸= ⟨k, l⟩; dij is a copy
of d ∈ S in Sij . Let SA be an S-act

∪
⟨i,j⟩∈K

SSij/θ, where θ is a congruence of the

S-act
∪

⟨i,j⟩∈K
SSij , generated by the set {⟨tij , til⟩ | ⟨i, j⟩ ∈ K, ⟨i, l⟩ ∈ K}∪{⟨sij , slj⟩ |

⟨i, j⟩, ⟨l, j⟩ ∈ K}; let ti be an equivalence class of θ with a representative tij ; let
sj be an equivalence class of θ with a representative sij ; let φ(x, y) be a formula
∃z(x = tz∧y = sz). It is clear that the restriction of θ on the S-act SAij (⟨i, j⟩ ∈ K)
is a zero-congruence.

Let us prove that

(1) SD(A) |= φ(ti, sj) ⇐⇒ i > j.

If i > j, then ti = t1ij/θ and si = s1ij/θ, i.e. SD(A) |= φ(ti, sj). Let i < j. Assume
that ti = tu and sj = su for some u ∈ D(A). Then Fact 2 implies that ti, sj ∈ Sc/θ
for some c/θ ∈ A, which is not true.

From Fact 3 it follows that (1) contradicts the stability of Th(SD(A)). Therefore
S is a linearly ordered monoid. �
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3. Superstability of the S-Div class

Theorem 2. Given a monoid S, the following statements are equivalent:
(1) S is a S-Div-superstabiliser;
(2) S is a superstabiliser;
(3) S is a well ordered monoid.

Proof. The implication 2 ⇒ 1 is trivial.
The implication 2 ⇔ 3 follows from Fact 5.
Let us prove 1 ⇒ 3.
Let S be a S-Div-superstabiliser. Then S is a S-Div-stabiliser and from Theorem

1 it is linearly ordered. We want to show that S is a well ordered monoid. Assume
the contrary, i.e. there exist ai ∈ S such that Sai ⊂ Sai+1 (i ∈ ω). Let T be a
theory S-Div, κ a cardinal number, such that κ > 2|T |. For η ∈ κω, we denote
copies of an S-act by SSη and copies of elements c ∈ S by cη ∈ Sη. Let η|0 = ∅,
η|i = (η(0), η(1), . . . , η(i− 1)), where i ∈ ω \ {0}.

Let SA =
⊔

η∈κω
SSη/Θ, where Θ is a congruence of the S-act

⊔
η∈κω

SSη generated

by the set {((ai)η, (ai)ε) | η, ε ∈ κω, η|i = ε|i}, bη|i = (ai)η/Θ, bη = 1η/Θ, where
η ∈ κω, B = {bη|i | η ∈ κω, i ∈ ω}. It is clear that |bη| = 1 for every η ∈ κω

and |B| = κω. Let η, ε ∈ κω, η ̸= ε. We show that tp(bη, B) and tp(bε, B) are
distinct 1-types over a theory Th(D(SA)). Since η ̸= ε, it follows that η|i ̸= ε|i
for some i ∈ ω and bη|i ̸= bε|i. Furthermore, bη|i = aibη and bε|i = aibε. Then
bη|i = aix ∈ tp(bη, B)\tp(bε, B). Consequently, |S(B)| ≥ |{bη | η ∈ κω}| = κω > κ
and it follows that the theory Th(D(SA)) is not superstable. This implies that
monoid S is not a S-Div-superstabiliserб and with that we obtain a contradiction.
Therefore, S is a well ordered monoid. �

4. ω-stability of the S-Div class

Theorem 3. Given a commutative countable monoid S, the following statements
are equivalent:

(1) S is a S-Div-ω-superstabiliser;
(2) S is an ω-stabiliser;
(3) Either S is an abelian group with at most countable number of subgroups or

S is finite and has a unique proper ideal.

Proof. Let S be a commutative countable monoid.
The implication 2 ⇒ 1 is trivial.
The implication 2 ⇔ 3 follows from Fact 7.
We shall prove that 1 ⇒ 3.
For a proof assume that S is a S−Div-ω-stabiliser. Then Fact 6. implies that S

is a S −Div-superstabiliser and from theorem 2 we obtain that S is a well ordered
monoid.

If S contains no cancellable and non-invertible elements then by definition of
divisible S-acts it follows that S −Div = S −Act. Then S is an ω-stabiliser.

Assume that such element exists in S. Since S is a well ordered monoid, there
exists a cancellable and non-invertible element g ∈ S such that

(2) ∀a ∈ S(Sg ⊂ Sa ⇒ a is non-cancellable or invertible).

We denote 1 ∈ S by g0.
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Consider an element i ∈ ω. We will show that

(3) ∀a ∈ S(Sgi+1 ⊂ Sa ⊆ Sgi ⇒ Sa = Sgi).

Assume that Sgi+1 ⊂ Sa ⊆ Sgi. Then a = sgi and s /∈ Sg. Since S is linearly
ordered, we have that Sg ⊂ Ss and g = ts for some t ∈ S. From (2) it follows that
s is either non-cancellable or invertible. Let us check that s is a cancellable element
of S. Indeed, if xs = ys for some x, y ∈ S, then xts = yts, i.e. xg = yg and x = y.
Therefore, s is invertible and Ss = S. Hence Sa = Ssgi = Sgi and (3) is proved.

We will now show that Sgi+1 ⊂ Sgi. Assume that Sgi = Sgi+1. Then gi = sgi+1

for some s ∈ S. Since g is cancellable, it follows that 1 = sg. This contradicts the
fact that g is not invertible.

Consider elements s, t ∈ S. We shall prove that

(4) s ∈ Sgi \ Sgi+1 ∧ t ∈ Sgj \ Sgj+1 =⇒ st ∈ Sgi+j \ Sgi+j+1.

Let s ∈ Sgi \ Sgi+1, t ∈ Sgj \ Sgj+1. As s ∈ Sgi, then s = s1g
i for some s1 ∈ S.

Since t ∈ Sgj , it follows that t = t1g
j for some t1 ∈ S. Then st = s1t1g

i+j ∈ Sgi+j .
Because s /∈ Sgi+j , we obtain that s1 /∈ Sg; also t /∈ Sgi+j , implies that t1 /∈ Sg.
Furthermore since S is linearly ordered we have that Sg ⊂ Ss1, Sg ⊂ St1 and from
(3), we derive that Ss1 = S and St1 = S. Assume st ∈ Sgi+j+1, i.e. st = rgi+j+1

for some r ∈ S. Then rgi+j+1 = s1t1g
i+j . From the fact that g is cancellable we

see that rg = s1t1. Thus, s1t1 ∈ Sg, i.e. S = Ss1t1 ⊆ Sg, which is a contradiction.
Hence st ∈ Sgi+j \ Sgi+j+1.

Let ∼ be the following relation on the set S:

a ∼ b ⇐⇒ ∃i ∈ ω : a, b ∈ Sgi \ Sgi+1.

It is easy to show that ∼ is an equivalence relation. Let us prove that ∼ is also a
congruence of the S-act SS. Consider elements a, b, s ∈ S, such that s ∈ Sgi\Sgi+1,
where i ∈ ω, and a ∼ b. We want to show that sa ∼ sb. Since a ∼ b, it follows that
a, b ∈ Sgj \Sgj+1 for some j ∈ ω. From (4), we obtain that sa, sb ∈ Sgi+j \Sgi+j+1,
i.e. sa ∼ sb.

Consider SS̄ =S S/∼ (SS̄ is an S-act). For a ∈ S denote by ā a congruence class
of ∼ with a representative a. Then (3) yields that S̄ = {ḡi | i ∈ ω}.

Define the action of the S-act S on the set A = {ḡn | n ∈ Z}. Let s ∈ S. Then
s ∼ gk for some k ∈ ω. Assume that sḡn = ḡn+k for every n ∈ Z. We will prove
that s(tḡn) = (st)ḡn for every s, t ∈ S, n ∈ Z. Consider elements s ∼ gk, t ∼ gm.
From (4) we have st ∼ gm+k. By definition of the action of the monoid S on the
set A, we have that (st)ḡn = ḡn+m+k, tḡn = ḡm+n and s(tḡn) = sḡm+n = ḡk+m+n.
Hence SA is an S-act. Note that SS̄ is a sub-S-act of SA.

We will see that SA ∈ S-Div. Let t be a cancellable element of S. We want to
check that tA = A. By Remark 1. it can be assumed that t is not invertible. Let
ḡn ∈ A и t ∼ gi. Then ḡn = tḡn−i ∈ tA. Therefore tA = A.

We will now show that a theory Th(SA) is not ω-stable. Let SAi (i ∈ N) be
copies of the S-act SA, and ai ∈ Ai be copies of an element a ∈ A. We assign to
every n ∈ N an S-act SA

n =
⊔
i≤n

SAi/Θ
n, where Θn is a congruence of an S-act⊔

i≤n
SAi generated by the set {ḡ−2

i | i ≤ n}. Note that for m ≥ −2 elements ḡm1 /Θn

, . . . ,ḡmn /Θn are the same. Denote by (gm)n an element ḡmi /Θn (m ≥ −2). To
each K ⊆ N we assign an S-act SA

K =
⊔

n∈K
SAn/η

K , where ηK is a congruence of
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an S-act
⊔

n∈K
SAn generated by the set {(ḡ−1)n | n ∈ K}. Note that for m ≥ −1

elements (gm)n/η
K , n ∈ K, coincide. Denote an element (gm)n/η

K by (gm)K .
Let SB =

⊔
K⊆N

SA
K/ξ, where ξ is a congruence of an S-act

⊔
K⊆N

AK generated

by the set { (g0)K | K ⊆ N}. Note that for m ≥ 0 elements (gm)K/ξ, K ⊆ ω,
coincide. For m ≥ 0, we will denote element (gm)K/ξ by gm. For every n ∈ N, we
define:

φn(y) � ∃nz(gz = y).

Let K1 ̸= K2. We want to check that tp((g−1)K1 , ∅) ̸= tp((g−1)K2 , ∅). Assume there
exists n such that n ∈ K1\K2. Then

SD(B) |= φn((g
−1)K1) ∧ ¬φn((g

−1)K2).

Hence, |S(∅)| ≥ 2N and a theory Th(SD(B)) is not ω-stable. Therefore, a monoid
S is not a Div-ω-stabiliser. �
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