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STABILITY OF THE CLASS OF DIVISIBLE S-ACTS

A.I. KRASITSKAYA

ABSTRACT. We describe monoids S such that the theory of the class of
all divisible S-acts is stable, superstable or, for commutative monoid, w-
stable. More precisely, we prove that the theory of the class of all divisible
S-acts is stable (superstable) iff S is a linearly ordered (well ordered)
monoid. We also prove that for a commutative monoid S the theory of
the class of all divisible S-acts is w-stable iff S is either an abelian group
with at most countable number of subgroups or is finite and has only
one proper ideal. Classes of regular, projective and strongly flat S-acts
were considered in [1, 2]. Using results from [3] we obtain necessary and
sufficient conditions for stability, superstability and w-stability of theories
of classes of all divisible S-acts.
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1. PRELIMINARIES

Let us recall some definitions and facts from the theory of S-acts [4]. Let S be
a monoid, i.e. a semigroup with the unit element 1. A monoid S is called linearly
(well) ordered, if the set {Sa | a € S} is linearly ordered (well ordered) by D. An
element ¢ € S is said to be right cancellable if for all a,b € S the equality ac = bc
implies that @ = b. An element s € S is called right invertible if there exists an
element t € S such that st = 1.

A (left) S-act A over a monoid S is a set A, on which an action of S is defined
and the unit element of S acts on A as identity. By S-Act we denote the class of
all S-acts.

Remark 1. If t is a right invertible element of S and gA is an S-act, then
tA=A.
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A congruence on an S-act g A is an equivalence relation p on A such that (a,a’) €
p implies (sa, sa’) € p for all a,a’ € A, s € S. The smallest congruence on the S-act
s A with respect to C which contains a set X is called a congruence of the S-act sA,
generated by X, and is denoted by p(X). Denote by a/p the class of a congruence
p with a representative a € A.

We say that an element a € A is divisible by s € S in gA, if there exists b € A
such that sb = a. A divisible S-act is an S-act g A, such that cA = A for every right
cancellable element ¢ € S. We use S-Div to denote the class of all divisible S-acts.
It is clear that S-Div is an elementary class.

By the coproduct of S-acts gA;, i € I, we mean their disjoint union. The
coproduct of S-acts gA;,i € I, is denoted by ][] sA;. Note that a coproduct of

iel
divisible S-acts is also a divisible S-act. A map 6 : A — B such that 0(sa) = s6(a)
for all a € A,s € 5, is called an S-morphism from the S-act A to the S-act B. An
S-act F is said to be free in S-Act (with a set of free generators X) if for every
S-act A and every map 6 : X — A there exists a unique S-morphism 6 : F — A
such that 10 = 6, where ¢ : X — F is an embedding.

Let T be the set of all right cancellable but not right invertible elements of
S. Let gA be an S-act, X = {(t,a) € T x A | ais not divisible by t}, sF(X)
be a free S-act with a set of free generators X, H = {(t(t,a),a)|(t,a) € X,a €
A} C(F(X)][TA) x (F(X)]TA), p(H) be a congruence of the S-act g(F(X)]]A),
generated by H, sU(T, A) =g (F(X)][ A)/p(H). Note that there exists a natural
embedding 7 : A — U(T, A). Therefore we can identify elements a € A with 7(a).

We introduce the following notations: sAg =g A, sA; =¢ U(T, A;_1) for i € N,
Fact 1. [4] The S-act sD(A) is divisible.

The S-act ¢D(A) is called the divisble extension of the S-act g A.

Fact 2. [5] Let sA be an S-act, a,b € A, d € D(A)\A, a,b € Sd. Then a,b € Sc
for some c € A.

The following facts from model theory can be found in [6, 7]. Let T be a consistent
theory in a language L, X = {z; | 1 <i <n}, L, = Lx. Every set p of sentences
of a language L,, is called an n—type of L. If a theory p U T is consistent, then p is
said to be an n—type over T. If p is a complete theory, then p is called a complete
n—type of L. If also T C p, we say that p is a full n—type over T. The set of all
complete n—types over T is denoted by S, (T).

Let A be an algebraic system of a language L, X C A, and a € A. The type of
an element a over the set X is the set tp(a, X) = {®(z) | Ax = ®(a)}. It is easy to
see that tp(a, X) is a complete 1-type over Th(Ax). Denote S;(Th(Ax)) by S(X).

A theory T is called stable for the cardinality k or r—stable, if |S(X)| < & for
every model A of a theory T" and every X C A of cardinality . If a theory T is
k—stable for some infinite x then T is called stable. If a theory T is k-stable for
every k > 2|71 then T is said to be superstable. If a theory T is not stable, then T
is called unstable.

Fact 3. [1] A complete theory is unstable iff there exists a formula ®(Z,y) with
2n wvariables, a model A of a theory T and a; € A", i € w, such that for every
i, 1 # ],

i1<j <= AE2(a,a,).
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Let K be a class of S-acts. A monoid S is called a K -stabiliser (K-superstabiliser,
K-w-stabiliser), if Th(gA) is stable (superstable, w-stable) for every S-act gA € K.
If K = S-Act, then K-stabiliser (K-superstabiliser, K-w-stabiliser) is called the
stabiliser (superstabiliser, w-superstabiliser).

Let us introduce the following notation:

Iy, y) =3y N\ —wi=u) A\ b y)A

1<i<j<n 1<i<n

Fact 4. [3] A monoid S is a stabiliser iff S is a linearly ordered monoid.
Fact 5. [3] A monoid S is a superstabiliser iff S is a well ordered monoid.

Fact 6. [7] If a theory T is stable for a countable cardinality (w-stable), then it is
stable for all infinite cardinalities.

Fact 7. [8] Let S be an arbitrary countable commutative monoid. Then the following
statements are equivalent:

1) S is an w-stabliser;

2) Either S is an abelian group with at most countable number of subgroups, or
S is finite and has a unique proper ideal.

2. STABILITY OF THE S-Div CLASS

Theorem 1. Given a monoid S, the following statements are equivalent:
1) S is a S-Div-stabiliser;
2) S is a stabiliser;
3) S is a linearly ordered monoid.

Proof. The implication 2 = 1 is trivial.

The implication 2 < 3 follows from Fact 4.

Let us prove 1 = 3.

Assume that S is a S-Div-stabiliser but not a linearly ordered monoid, i.e. there
exist ¢,s € S such that St € Ss and Ss € St. Let K = {(i,7) | j < i < w}; S5 —
a copy of an S-act ¢S ((i,j) € K) and S;; N Sk = 0, if (4, 7) # (k,1); di; is a copy
of d € S'in S;;. Let gA be an S-act |J g95i;/6, where 6 is a congruence of the

(i,J)EK
S-act  |J $Si;, generated by the set {(t;;,tu) | (i,7) € K, (i,1) € K}U{(si;,s15) |
(i,j)eK
(1,7),(l,7) € K}; let t; be an equivalence class of 6 with a representative ¢;;; let
s; be an equivalence class of § with a representative s;;; let ¢(z,y) be a formula
Jz(z = tzAy = sz). It is clear that the restriction of 6 on the S-act sA4;; ({4, 7) € K)
is a zero-congruence.
Let us prove that

(1) sD(A) = o(ti,s5) =i > J.
If ¢ > j, then t; = t1;;/60 and s; = s1;;/0, i.e. sD(A) = ¢(t;,s;). Let i < j. Assume
that ¢; = tu and s; = su for some v € D(A). Then Fact 2 implies that t;,s; € Sc/6
for some ¢/6 € A, which is not true.

From Fact 3 it follows that (1) contradicts the stability of Th(gD(A)). Therefore
S is a linearly ordered monoid. O
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3. SUPERSTABILITY OF THE S-Div CLASS

Theorem 2. Given a monoid S, the following statements are equivalent:
(1) S is a S-Div-superstabiliser;
(2) S is a superstabiliser;
(8) S is a well ordered monoid.

Proof. The implication 2 = 1 is trivial.

The implication 2 < 3 follows from Fact 5.

Let us prove 1 = 3.

Let S be a S-Div-superstabiliser. Then S is a S-Div-stabiliser and from Theorem
1 it is linearly ordered. We want to show that .S is a well ordered monoid. Assume
the contrary, i.e. there exist a; € S such that Sa; C Sa;41 (i € w). Let T be a
theory S-Div, r a cardinal number, such that x > 2/TI. For n € x“, we denote
copies of an S-act by g5, and copies of elements ¢ € S by ¢, € S,. Let 1|0 = 0,
nli = (n(0),n(1),...,n( — 1)), where i € w \ {0}.

Let sA= |] s5,/0©, where © is a congruence of the S-act || S, generated

nekv nER®

by the set {((a:),,(a:).) | n,e € k¥, nli = eli}, by = (ai), /O, by = 1,,/O, where
n ek’ B={by; | n€ric w} Itis clear that [b,| = 1 for every n € x*
and |B| = k. Let n,e € k¥, n # ¢. We show that ¢p(b,, B) and tp(b., B) are
distinct 1-types over a theory Th(D(gsA)). Since n # €, it follows that n|i # i
for some i € w and by; # b.;. Furthermore, b,; = a;b, and b.; = a;b.. Then
byii = ax € tp(by, B)\tp(be, B). Consequently, |S(B)| > {b, | n € s} = * > &
and it follows that the theory Th(D(sA)) is not superstable. This implies that
monoid S is not a S-Div-superstabiliser6 and with that we obtain a contradiction.
Therefore, S is a well ordered monoid. ([

4. w-STABILITY OF THE S-Div CLASS

Theorem 3. Given a commutative countable monoid S, the following statements
are equivalent:

(1) S is a S-Div-w-superstabiliser;

(2) S is an w-stabiliser;

(8) Either S is an abelian group with at most countable number of subgroups or
S is finite and has a unique proper ideal.

Proof. Let S be a commutative countable monoid.

The implication 2 = 1 is trivial.

The implication 2 < 3 follows from Fact 7.

We shall prove that 1 = 3.

For a proof assume that S is a S — Div-w-stabiliser. Then Fact 6. implies that S
is a S — Div-superstabiliser and from theorem 2 we obtain that S is a well ordered
monoid.

If S contains no cancellable and non-invertible elements then by definition of
divisible S-acts it follows that S — Div = S — Act. Then S is an w-stabiliser.

Assume that such element exists in S. Since S is a well ordered monoid, there
exists a cancellable and non-invertible element g € S such that

(2) Va € S(Sg C Sa = a is non-cancellable or invertible).
We denote 1 € S by ¢°.
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Consider an element 7 € w. We will show that
(3) Va € S(Sg'™ C Sa C Sg* = Sa = Sg").

Assume that Sg'*t! C Sa C Sg'. Then a = sg* and s ¢ Sg. Since S is linearly
ordered, we have that Sg C Ss and g = ts for some ¢t € S. From (2) it follows that
s is either non-cancellable or invertible. Let us check that s is a cancellable element
of S. Indeed, if xs = ys for some z,y € S, then zts = yts, i.e. g = yg and = = y.
Therefore, s is invertible and Ss = S. Hence Sa = Ssg’ = Sg' and (3) is proved.

We will now show that S¢**! C Sg’. Assume that Sg° = S¢**!. Then ¢* = sg’t!
for some s € S. Since ¢ is cancellable, it follows that 1 = sg. This contradicts the
fact that g is not invertible.

Consider elements s,t € S. We shall prove that

(4) s€Sg"\SgT At e Sg? \ Sg? Tt = st € Sg'TI \ Sgi It

Let s € Sg* \ Sg't!, t € Sg7 \ Sg't!. As s € Sg', then s = 519’ for some s; € S.
Since t € Sg7, it follows that ¢ = t;¢’ for some ¢t; € S. Then st = s1t,g'17 € Sg**J.
Because s ¢ Sg‘tJ, we obtain that s; ¢ Sg; also t ¢ Sg**7, implies that ¢t; ¢ Sg.
Furthermore since S is linearly ordered we have that Sg C Ssi, Sg C St; and from
(3), we derive that Ss; = S and St; = S. Assume st € Sg'™7 T ie. st = rgttitl
for some r € S. Then rgt/*+! = s1t;¢°T7. From the fact that g is cancellable we
see that rg = s1t1. Thus, s1t; € Sg, i.e. S = Ss1t; C Sg, which is a contradiction.
Hence st € Sg™7 \ Sgiti+l,
Let ~ be the following relation on the set S:

a~b<=Jicw:a,bec Sg"\ Sgt.

It is easy to show that ~ is an equivalence relation. Let us prove that ~ is also a
congruence of the S-act 5S. Consider elements a, b, s € S, such that s € Sg*\ Sg* 1,
where i € w, and a ~ b. We want to show that sa ~ sb. Since a ~ b, it follows that
a,b € Sg7\ Sg/*! for some j € w. From (4), we obtain that sa, sb € Sg**t7\ Sg+ti+1
i.e. sa ~ sb.

Consider 55 =g S/~ (55 is an S-act). For a € S denote by @ a congruence class
of ~ with a representative a. Then (3) yields that S = {g° | i € w}.

Define the action of the S-act S on the set A = {g" | n € Z}. Let s € S. Then
s ~ g* for some k € w. Assume that sg” = g"** for every n € Z. We will prove
that s(tg") = (st)g" for every s,t € S, n € Z. Consider elements s ~ g¥, t ~ g™.
From (4) we have st ~ g™**. By definition of the action of the monoid S on the
set A, we have that (st)g" = g"t™+F tg" = g™t and s(tg") = sgm*t" = ghtmtn,
Hence gA is an S-act. Note that ¢S is a sub-S-act of gA.

We will see that gA € S-Div. Let ¢t be a cancellable element of S. We want to
check that tA = A. By Remark 1. it can be assumed that ¢ is not invertible. Let
gt € Aut~ g’ Then g" =tg" " € tA. Therefore tA = A.

We will now show that a theory Th(gA) is not w-stable. Let sA; (i € N) be
copies of the S-act gA, and a; € A; be copies of an element a € A. We assign to
every n € N an S-act gA™ = | | s4,;/0O", where ©" is a congruence of an S-act

i<n
|| sA; generated by the set {g;? | i < n}. Note that for m > —2 elements g} /0"
i<n
, . ,gm /O™ are the same. Denote by (¢™), an element g*/0©" (m > —2). To

each K C N we assign an S-act sAX = || g4, /1", where n¥ is a congruence of
nek



STABILITY OF THE CLASS OF DIVISIBLE S-ACTS 731

an S-act || sA, generated by the set {(g~!), | n € K}. Note that for m > —1
nekK

elements (g™),/n*, n € K, coincide. Denote an element (¢™),,/n* by (¢"™) k.

Let B = || A /¢, where € is a congruence of an S-act || AX generated
KCN KCN

by the set { (gﬁ)K | K C N}. Note that for m > 0 elements (¢™)x/¢, K C w,
coincide. For m > 0, we will denote element (¢™)x /& by g™. For every n € N, we
define:

pn(y) = 3"z(92 = y).
Let K1 # K. We want to check that ¢tp((¢7 ') k,,0) # tp((¢97 1) k,, ). Assume there
exists n such that n € K;\Ks. Then

sD(B) E en((g7 k1) A=0n((97 ") Ks)-
Hence, |S(0)| > 2N and a theory Th(sD(B)) is not w-stable. Therefore, a monoid
S is not a Div-w-stabiliser. O

REFERENCES

[1] A.V. Mikhalev, E.V. Ovchinnikova, E.A. Palyutin, A.A. Stepanova, Model theoretic properties
of regular polygons, J. Math. Sci. (N.Y.), 140:2 (2007), 250—285. MR2142512

[2] V. Gould, A.V. Mikhalev, E.A. Palyutin, A.A. Stepanova, Model theoretic properties of free,
projective, and flat S-acts, J. Math. Sci. New York, 164:2 (2010), 195—227. Zbl 1288.03026

[3] T.G. Mustafin, On stability theory of polygons, Trudy Inst. Mat., 8 (1988), 92-108. Zbl
0725.03019

[4] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories, Walter De Gruyter, Berlin,
2000. Zbl 0945.20036

[5] A.I. Krasitskaya, A.A. Stepanova, Primitive normality and primitive connection of divisible
acts, Algebra and Logic, given to the press.

[6] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, Moscow: Fizmathlit, 2011. Zbl 0632.03001

[7] C.C. Chang, H.J. Keisler, Model theory, Elsevier, New York, 1973. Zbl 0276.02032

[8] V.S. Bogomolov, T.G. Mustafin, Description of commutative monoids over which all polygons
are W-stable, Algebra and Logic, New York, 28:4 (1989), 239—247. Zbl 0704.03018

ANASTASIA IGOREVNA KRASITSKAYA
FAarR EASTERN FEDERAL UNIVERSITY,
8, SUKHANOVA STR.,

VwiabpivosTok, 690090, Russia
E-mail address: stasyakras@gmail.com



