Ефремов Е.Л.

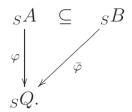
ПРИМЕР НЕКОММУТАТИВНОГО МОНОИДА, НАД КОТОРЫМ КЛАСС СЛАБО ИНЪЕКТИВНЫХ ПОЛИГОНОВ НЕ ПРИМИТИВНО НОРМАЛЬНЫЙ

Кафедра алгебры, геометрии и анализа ШЕН ДВФУ Научный руководитель — д.ф.-м.н., профессор А.А. Степанова

В [1, 2] описаны моноиды, над которыми класс всех полигонов примитивно нормален. В [3] доказано, что теория любого инъективного полигона примитивно нормальна. Понятие слабо инъективного полигона является обобщением понятия инъективного полигона. В [4] показан пример коммутативного моноида, над которым класс всех слабо инъективных полигонов не является примитивно нормальным. В данной работе продолжен поиск критерия примитивной нормальности класса слабо инъективных полигонов.

Напомним некоторые понятия из теории полигонов и теории моделей.

Пусть S — моноид. Под (левым) полигоном $_SA$ над моноидом S понимается множество A, на котором определено действие элементов из S, причем единица действует на A тождественно. Полигон $_SQ$ называется инъективным полигоном над S, если для любого полигона $_SB$ над S, для любого подполигона $_SA \subseteq _SB$ и для любого гомоморфизма ϕ : $_SA \to _SQ$ существует гомоморфизм $\overline{\phi}$: $_SB \to _SQ$, продолжающий $_SB$:



Если в определении инъективного полигона заменить полигон $_SB$ на полигон $_SS$, а полигон $_SA$ на полигон $_SI$, где I — левый идеал S, то получится определение слабо инъективного полигона.

Пусть T — полная теория языка L, $\mathcal{A} = \langle A; L \rangle$ — алгебраическая система языка L. Если $\Phi(\bar{x},\bar{y})$ — формула языка L, $\bar{a} \in A$ той же длины, что и \bar{y} , то через $\Phi(\mathcal{A},\bar{a})$ будем обозначать множество $\{\bar{b} \in A \mid \Phi(\bar{x},\bar{y}) \text{ истинна в } \mathcal{A} \text{ на } \langle \bar{b},\bar{a} \rangle \}$. Формула $\exists \bar{x} (\Phi_0 \land ... \land \Phi_k)$, где Φ_i ($i \leq k$) — атомарные формулы языка L, называется *примитивной*. Если $\Phi(\bar{x},\bar{y})$ — примитивная формула языка L, $\bar{a} \in A$ той же длины, что и \bar{y} , то множество вида $\Phi(\mathcal{A},\bar{a})$ называется *примитивным*. Если $\bar{b} \in A$ той же длины, что и \bar{y} , то множества $\Phi(\mathcal{A},\bar{a})$ и $\Phi(\mathcal{A},\bar{b})$ называются *примитивными копиями*. Теория T называется *примитивно нормальной*, если X = Y или $X \cap Y = \emptyset$ для любых примитивных копий X и Y. Класс \mathcal{K} алгебраических систем языка L называется *примитивно нормальным*, если теория $Th(\mathcal{A})$ примитивно нормальна для любой $\mathcal{A} \in \mathcal{K}$.

Утверждение. Пусть моноид S порождается множеством $\{s_1, s_2\}$ и выполняются следующие условия:

- 1) $t(s_1s_2^n) = s_1s_2^n$ для любого $t \in S$,
- $2)\,Ss_1s_2^n\cap Ss_2^{n+1}=\emptyset$

для любого $n \in \omega$. Тогда класс всех слабо инъективных полигонов над моноидом S не примитивно нормальный.

Работа выполнена при финансовой поддержке РФФИ, проект № 17-01-00531, и Минобрнауки РФ, дополнительное соглашение от 21.04.2020 № 075-02-2020-1482-1.

Список литературы

- 1. Степанова, А. А. Примитивно связные и аддитивные теории полигонов // Алгебра и логика. -2006.-T.45, № 3.-C.300-313.
- 2. Степанова, А. А. Полигоны с примитивно нормальными и аддитивными теориями // Алгебра и логика. -2008. Т.47, № 4. С. 279-288.
- 3. Ефремов, Е.Л. Примитивная нормальность и примитивная связность класса инъективных полигонов // Алгебра и логика (в печати).
- 4. Ефремов, Е.Л. Пример моноида, над которым класс слабо инъективных полигонов не является примитивно нормальным // Материалы Региональной научно-практической конференции студентов, аспирантов и молодых учёных по естественным наукам, Владивосток, 15–30 апреля 2019 г. [Электронный ресурс] Владивосток: Дальневост. федерал. ун-т. 2019. С. 246-247.